

CATÁLOGO DIGITAL

CATÁLOGO DE SOLUCIONES EN PROTECCIÓN PASIVA CONTRA INCENDIO

La protección pasiva contra incendios se refiere a las medidas y sistemas que se implementan para retrasar la propagación del fuego, limitar su alcance y proporcionar más tiempo para la evacuación segura de personas y la intervención de los equipos de extinción de incendios.

Es esencial llevar a cabo una evaluación detallada de los riesgos de incendio en un edificio o estructura y planificar la protección pasiva adecuada en consecuencia.

El desarrollo de ingeniería de protección pasiva contra fuego es un campo crucial para garantizar la seguridad en edificaciones y estructuras y debe realizarse en colaboración con expertos en seguridad contra incendios y especialistas en ingeniería de protección pasiva para garantizar que las medidas implementadas sean efectivas y cumplan con los estándares de seguridad.

La prevención y la protección adecuada contra incendios son fundamentales para salvaguardar la vida de las personas y preservar las propiedades en caso de emergencia.

INDICEDE SOLUCIONES

DESARROLLO DE INGENIERÍA

DESARROLLO DE INGENIERÍA	9
PROTECCIÓN CORTAFUEGO DE CABLES YCAJAS ELÉCTRICAS	
SPECSEAL® CS105 PULVERIZADOR CORTAFUEGO INTUMESCENTE PARA LA PROTECCION DE CABLES	9
THERMOLAG REVESTIMIENTO CORTAFUEGO INTUMESCENTE PARA LA PROTECCION DE CABLES	12
SPECSEAL® SSP MASILLA Y LAMINAS CORTAFUEGOS PARA SELLADO DE CAJAS ELÉCTRICAS	14
SPECSEAL® SSP MASILLA Y LAMINAS CORTAFUEGOS PARA SELLADO DE CAJAS ELÉCTRICAS	16
FR PUTTY PAD MASILLA CORTAFUEGOS PARA SELLADO DE CAJAS ELÉCTRICAS	17
LÁMINAS DE MASILLA RESISTENTES AL FUEGO	19
EZ PATH SERIES 44+ CONDUCTO RESISTENTE AL FUEGO PARA CABLES	21
SELLOS CORTAFUEGO DE PASADAS Y JUNTAS	
FIP 1 STEP 3M ESPUMA CORTAFUEGO INTUMESCENTE BICOMPONENTE	23
FWBT 3M CINTA CORTAFUEGO PARA JUNTAS Y MURO CORTINA	25
SPECSEAL® AS200 SELLADOR CORTAFUEGO ELASTOMÉRICO PARA JUNTAS Y MURO CORTINA	27
SPECSEAL® LCI SELLADOR CORTAFUEGO LATEX EN INTERIORE PARA PASADAS JUNTAS Y TUBERÍAS	29
SPECSEAL® SIL SELLADOR CORTAFUEGO SILICONA EN INTEMPERIE PARA PASADAS JUNTAS Y TUBERÍAS	32
SPECSEAL® SIL SELLADOR CORTAFUEGO SILICONA EN INTEMPERIE PARA PASADAS JUNTAS Y TUBERÍAS	35
CINTA ENVOLVENTE INTUMESCENTE SPECSEAL® SSW BLU/BLU2	38
CINTA ENVOLVENTE INTUMESCENTE SPECSEAL® SSW BLU/BLU2	41
SPECSEAL® CS LÁMINA COMPUESTA CORTAFUEGOS PARA SELLADO DE ESCALERILLAS	43
FR BOARD PANEL CORTAFUEGOS PARA SELLADO DE ESCALERILLAS	45
FR COATING RECUBRIMIENTO CORTAFUEGOS PARA SELLADO DE ESCALERILLAS	46
PROTECCIÓN DE ESTRUCTURAS METÁLICAS Y CONCRETO	
PINTURA CORTAFUEGO INTUMESCENTE	48
FIRE CONTROL F-60 y F-90	48
PINTURA CORTAFUEGO INTUMESCENTE FIRE TEX F-120	52

SISFIREPRO SELLADO DE AISLADORES SÍSMICOS

SISFIREPRO F-120 SYNIXTOR

ROXTEC SELLADO DE TRANSITO DE CABLES Y TUBERÍAS

ROXTEC WEDGE Y WEDGEKIT

SELLADOS PARA UN SOLO CABLE O TUBERÍA: ROXTEC RS SEAL	101
SELLOS ROTEX RS OMD	102
SELLOS ROTEX RS OMD	103
SELLO ROXTEC SPM™	105
SELLO ROXTEC C RS T	106
SELLO ROXTEC RS EX CON SL RS	107
MARCO ROXTEC S	108
MARCO ROXTEC G	111
MARCO ROXTEC GH	115
MARCO ROXTEC GKO	119
MARCO ROXTEC GH BG™	120
MARCO ROXTEC FLAMEPLUS™ CON EXTENSIÓN	123
PASAMUROS ROXTEC R	124
MARCOS ROCTEX HD	125
MARCOS ROCTEX CF 16	126
MARCOS ROCTEX CF 8/32	126
MARCOS ROCTEX ComSeal™	127
MARCOS ROCTEX ComSeal™ EMC	127
MARCOS ROCTEX ComSeal™ EMC	128
MARCO ROXTEC R UG™EMC	128
SELLO ROXTEC RS UG™	129
SELLO ROXTEC H3 UG™	130
MÓDULO ROXTEC RM CON MULTIDIAMETER™	131
MÓDULO ROXTEC CM CON MULTIDIAMETER™	132
MÓDULO ROXTEC RM UG™ CON MULTIDIAMETER™	132
KIT DE SELLADO ROXTEC	133
ROXTEC WEDGE Y WEDGEKIT	134

SOLUCIONES CORTAFUEGOS PARA SUBESTACIONES

SOLUCIONES CORTAFUEGOS PARA SALAS ELÉCTRICAS

SOLUCIONES CORTAFUEGOS PARA INDUSTRIAS

206

SOLUCIONES CORTAFUEGOS PARA HOSPITALES	210
SOLUCIONES CORTAFUEGOS PARA DATA Y TELECOM	214
SOLUCIONES CORTAFUEGOS PARA BANCOS	218
OBRAS DE REFERENCIA	
CHUQUICAMATA PROTECCION SELLOS PERIMETRALES	221
GLASSTECH S.A. MURO CORTINA FWBT	222

DESARROLLO DE INGENIERÍA

DESARROLLO DE INGENIERÍA

Algunas de las principales áreas que consideramos en el desarrollo de la ingeniería de protección pasiva contra fuego bajo normativa chilena, UL y UN:

- Cubicación de Recubrimientos ignífugos
- Cálculos de Compartimentación
- Memorias de Calculo para Muros Cortafuego
- Metrado de Sellados de penetraciones
- Metrado de Sellado de Aisladores Sísmicos
- Especificaciones de Puertas y ventanas resistentes al fuego
- Hermetización de Escaleras y pasillos para evacuación

PROTECCIÓN CORTAFUEGO DE CABLES Y CAJAS ELÉCTRICAS

SPECSEAL® CS105 PULVERIZADOR CORTAFUEGO
INTUMESCENTE PARA LA PROTECCION DE
CABLES

SpecSeal CS

Pulverizador para cables SpecSeal®CS105

El pulverizador para cables SpecSeal® CS105 es un elastómero ablativo que también se hincha para proteger uno o varios cables eléctricos agrupados contra la propagación de las llamas. Este revestimiento, cuando se instala correctamente, limita la propagación de las llamas de acuerdo con las normas IEEE 383, IEEE 1202, IEC 60332-3 y la clase 3971 de Factory Mutual (FM). Adicionalmente, CS105 puede proveer algún grado de integridad de corto plazo de los circuitos en una situación de incendio de acuerdo con la norma IEC 60331-21.

El pulverizador para cables SpecSeal®CS105 está formulado para adherirse bien a prácticamente todos los materiales de los forros de los cables y se puede aplicar con equipos aspersores sin aire o con una brocha. El pulverizador para cables Sp®cSeal CS105 tiene un contenido muy alto de sólidos (por volumen) y ofrece los índices más altos de cobertura que cualquier producto de este tipo.

El pulverizador para cables SpecSeal® CS105 se seca para formar una protección flexible contra la propagación del fuego. Su sistema aglutinante de látex de primer nivel, es totalmente resistente al agua y no se vuelve a emulsificar después que se seca. El pulverizador para cables SpecSeal® CS105 no contiene fibras inorgánicas, asbesto ni solventes.

Aplicaciones

El pulverizador para cables SpecSeal[®]CS105 está diseñado principalmente para la protección de cables eléctricos, de datos o de comunicaciones agrupados en una bandeja de cables o en aplicaciones de cables en bastidor para limitar la propagación de fuego.

Especificaciones

El revestimiento protector para cables contra incendios de un solo componente debe ser un elastómero ablativo basado en agua que además se hinche. El revestimiento se debe secar para formar una película flexible,

resistente al agua y al clima, y no debe contener solventes, asbesto ni fibras inorgánicas. El revestimiento debe ser tixotrópico y se debe poder aplicar con brocha o mediante aspersión sin aire. El revestimiento aprobado debe tener la aprobación para la clase 3971 de FM y debe estar probado según las normas IEC 60332-3, IEEE 383 y IEEE 1202.

Divisiones especificadas

D ivisión 70 7 84 00 Cortafuego
D ivisión 26 26 00 00 Eléctrico

Desempeño

El pulverizador para cables SpecSeal[®]CS105 cumple con los requisitos de aprobación de Factory Mutual (FM) para la protección de cables eléctricos agrupados (Clase no. 3971 de FM). Las pruebas realizadas por las aprobaciones de FM indican que la reducción de ampacidad de los cables no se requiere cuando se instala de acuerdo con las recomendaciones. El pulverizador para cables SpecSeal [®]CS105 también cumple con las normas IEC 60331-21 e IEC 60332-3, y aprueba la norma IEEE 383/1202.

Características y ventajas

- · Basado en agua para facilitar la instalación y la limpieza
- \cdot Tixotrópico para una alta aplicación en construcción
- · Alto contenido de sólidos, mejor cobertura
- · Seguro, sin solventes, sin asbesto, sin PCB, sin fibras inorgánicas
- \cdot No halogenado
- · Flexible
- · Resistente al agua y al clima
- · Abrasión baja para una mayor vida útil en la bomba y menos mantenimiento
- · Adherencia automática
- · Cumple con los requisitos de LEEDTM√3. Crédito por materiales de baja emisión. Consulte la certificación LEED para ver los créditos adicionales que correspondan.

PROPIEDADES FÍSICAS		
Color	Blanco	
Densidad/Peso por galón	1,28 kg/l (10,7 lb/gal)	
Contenido de sólidos por peso	68,9%	
Contenido de sólidos por volumen	62,5%	
Propagación de llamas*	0	
Desarrollo de humo*	15	
Cobertura	0,42 m cuadrados/l a 2,4 mm de grosor de la Película húmeda (17,1 pies cuadrados/gal a 3/32" de grosor de la película húmeda)	
Viscosidad	105.000 cp	
Temperatura en servicio	Menos de 85°C (185°F)	
Temperatura de almacenamiento	4°C (40°F) a 35°C (95°F)	
Temperatura de aplicación	4°C (40°F) a 35°C (95°F)	
Tiempo de secado***	Endurece en 2 horas Secado en 24 a 48 horas	
Contenido VOC**	26 g/l	
Vida útil almacenado desde la fecha de fabricación	24 meses	

^{*} Probado de acuerdo con ASTM E84 (UL723) con un 14% de cobertura de la superficie (prueba modificada para selladores y masillas)

Limitaciones

Utilice el producto según las instrucciones del fabricante. Utilícelo solo en aplicaciones según los diseños publicados o las recomendaciones específicas del fabricante. Finalmente el usuario final debe determinar la idoneidad del producto o el diseño para sus necesidades específicas y asume la responsabilidad de su uso. EL PRODUCTO CONTIENE AGUA Y ES CONDUCTOR HASTA QUE ESTÉ SECO. NO APLIQUE EN PRESENCIA DE CONDUCTORES ELÉCTRICOS EXPUESTOS O CON ENERGÍA.

Este producto fue diseñado para un uso seguro con plásticos. Este se ha utilizado ampliamente y con éxito junto con diversos tipos de tuberías, tubos y aislamientos de cable plásticos. Sin embargo, las variaciones en estos materiales impiden garantizar la compatibilidad. STI recomienda encarecidamente al usuario que consulte al fabricante de las tuberías, tubos o cables sobre cualquier sensibilidad conocida o posibles restricciones antes de aplicar este producto.

Mantenimiento

Inspección: Las instalaciones se deben inspeccionar periódicamente en busca de daños posteriores. Siguiendo las precauciones de seguridad detalladas a continuación (información preventiva) y las correspondientes pautas de instalación, quite el revestimiento en las áreas dañadas hasta llegar al material no dañado. Vuelva a aplicar material de revestimiento nuevo hasta lograr al grosor del revestimiento original.

Renovación: Los cables se pueden agregar o quitar fácilmente de las instalaciones con revestimiento. Los cables nuevos se deben revestir según los programas y las pautas de mantenimiento establecidos de la planta. Consulte al supervisor de seguridad de las instalaciones.

Servicio técnico

Specified Technologies Inc. proporciona asistencia técnica de cobro revertido para ayudarlo en la selección de productos y el correcto diseño de *instalación. Se proporciona una biblioteca completa de información técnica en el sitio we<u>b de la empresa www.stifirestop.com</u> que incluye Hojas de datos de seguridad (SDS).*

Información preventiva

Consulte las hojas de datos de seguridad (SDS) para obtener información adicional sobre la manipulación y desecho seguros de este material. Lave las áreas de contacto con la piel con agua y jabón. Evite el contacto con los ojos. EL PULVERIZADOR PARA CABLES SPECSEAL®CS105 ES CONDUCTOR HASTA QUE ESTÁ SECO. NO APLIQUE A CONDUCTORES ELÉCTRICOS CON ENERGÍA. INSTALE BAJO LA SUPERVISIÓN DEL INGENIERO ELÉCTRICO O EL ADMINISTRADOR DE SEGURIDAD DE LA PLANTA O LAS INSTALACIONES.

Equipo de aplicación

AVISO: La aplicación mediante rocío del pulverizador para cables SpecSeal®CS105 requiere equipo de pulverización sin aire que cumpla con las siguientes especificaciones:

^{**} Según la regla 1168 de SCAQMD (Método 24 de la EPA)

^{***} Depende de la temperatura y la humedad

Presión de trabajo: Mínimo 3.000 psi (207 bares)

Entrega: Se recomienda un mínimo de 2,73 lpm (0,72 gpm EE.UU.)
Orificio de la punta aspersora: Se recomienda 0,58 mm a 0,66 mm (0,023 a 0,026 pulg.)

Piezas que se mojan:

Todos los sellos y superficies de contacto deben ser aptas para entrar en contacto con

emulsiones de látex.

El siguiente equipo pulverizador sin aire ha demostrado su idoneidad para la aplicación de este producto. STI no garantiza la idoneidad ni el uso de este equipo y no tiene ninguna afiliación de ningún tipo con su fabricante. Se requiere una tubería de líquido de un mínimo de 9,5 mm (3/8 pulg.), es preferible una tubería de 13 mm (1/2 pulg.). Consulte al fabricante del equipo aspersor para el uso de mangueras más largas o elevaciones para alturas superiores. Se recomienda una punta aspersora reversible. Se sugiere un patrón en abanico de 152 mm (6 pulg.) para evitar la sobreaspersión. El siguiente equipo es fabricado por Titan Tool, Inc. Franklin Lakes, NJ. Elemento Nombre y descripción del elemento: Titan Atomizador eléctrico sin aire 740ix, Graco Inc. Atomizador eléctrico sin aire Ultra Max II 695.

Disponibilidad

El pulverizador para cables SpecSeal CS105 está disponible con los distribuidores autorizados de Specified Technologies Inc. (STI). Para obtener información adicional de compra y técnica o para obtener los nombres y la ubicación del representante o distribuidor más cercano, de este u otros productos de Specified Technology, llame al 1-800-992-1180 o visite www.stifirestop.com.

		INFORMACIÓN DE PE	DIDO		
Número de catálogo	Número UPC	Tamaño	(UOM) Cant.	Cant. por caja	Peso (Cada uno)
CS105	730573071045	Balde de 5 galones; 19 litros (1.155 pulg. cúbicas)	7	7	24,33 kg (53,63 lb)

THERMOLAG REVESTIMIENTO CORTAFUEGO INTUMESCENTE PARA LA PROTECCION DE CABLES

Pintura para clabes: descripción

Synixtor ofrece dentro de los productos de su catálogo la pintura para cables Thermo-Lag 270,

Revestimiento de base acuoso que puede ser aplicado a cables eléctricos para retardar la propagación del fuego. Una vez aplicado, cumple con el código y los requisitos de seguridad para uso interior y exterior. Da lugar a una superficie dura y flexible que no se empolva o escama.

Trabaja inhibiendo el proceso de combustión y reduciendo la transmisión de calor a los cables protegidos. La pintura envuelve los cables protegidos con una cubierta retardante de llama que los protege de la propagación de llama y mantiene la integridad del circuito durante un incendio.

Thermo-Lag 270 es una manera económica y sin mantenimiento de proteger los cables de la exposición al fuego. Es adecuado para su uso interior o exterior para proteger los cables en equipos eléctricos, bandejas porta cables y cuartos de control

Carcaterísticas Técnicas

Carcaterísticas

- Flexible
- Superficie dura y libre de polvo
- Permite fácil reemplazo de cables
- Producto base agua/ poco olor
- Libre de asbestos Cumple con regulaciones EPA y OSHA
- Factory Mutual Ensayado y aprobado
- No reduce la capacidad de los conductores
- Intemperie Aprobado para uso exterior
- Calidad de fabricación Fabricado bajo los más estrictos estándares de calidad Carboline
- Provee protección en un Espesor de, 1 6mm de Película Seca

Color Gris

Apariencia

- Texturizado
- El acabado texturizado varía en función del método de aplicación usado.

Información: no se requieren imprimantes

Contenido de sólidos: por volúmen 53% +/- 2%

Valores VOC: como se sumistra: 29 g/l

Calculado según EPA

método 24:56g g/l (calculado menos agua y

solventes excentos)

Protección contra fuego de espesor de película húmeda

.3mm

Protección contra fuego de espesor de película seca

. 1.6 mm

Área de desempeño

- Plantas petroquímicas
- . Plantas de energía
- . Plantas siderúrgicas y de aluminio
- . Instalaciones de producción

Limitaciones

No recomendado para temperaturas de superficie sobre los 91°C a largo plazo en uso continuo, 104°C en uso no continuo.

Instalación

Thermo-Lag 270 puede ser aplicado con spray, paleta o a mano. Cuando se aplica con spray Thermo-Lag 270 puede ser diluido hasta un 5% en volumen. Una única capa con varias pasadas de forma rápida da lugar a un mayor control sobre las cantidades, sobre el espesor y sobre el acabado. En la mayoría de las condiciones, supone una ventaja aplicar dos capas finas mejor que una capa gruesa. Antes de aplicar Thermo-Lag® 270 a cables eléctricos, éstos deben estar secos y libres de todo aceite, grasa, condensación o cualquier otra contaminación.

Condiciones de aplicación

Condición	Material	Superficie	Ambiente	Humedad
Minma	10°C (50°F)	4°C(40°F)	4°C (40°F)	0%
Maxima	43°C (110°F)	35°C (95°F)	35°C (95°F)	90%

Las temperaturas del aire y del sustrato deben ser de al menos 4.4°C y en aumento. La temperatura de superficie debe ser mínimamente de 3°C sobre el punto de rocío. La máxima humedad debe ser del 90%. El área debe estar protegida de lluvias o agua en movimiento hasta que el material esté curado. La temperatura ambiente mínima debe mantenerse por 24 horas luego de la aplicación.

Tiempos de curado

Temp. de la superficie	Seca al tacto	Tiempo de curado final
21°C (70°F)	24 Horas	15 Dias

Los tiempos de curado dependen del espesor, humedad y temperatura. Los tiempos normales de secado se basan en un espesor húmedo de 3.2mm.

Acabado

Generalmente no requiere de una pintura de terminación. En atmósferas severamente corrosivas, consultar al Servicio Técnico de Carboline para la selección del recubrimiento más apropiado para el ambiente específico.

Empaque manejo y almacenamiento

Envasado:	5 galones (18,925 Lts)
Vida Útil en Envase:	12 meses
	*Vida útil en envase: Válida si los envases son los originales, están
Almacenamiento:	Almacene en interior en un ambiente seco entre 4.4°C –43.3°C.
	Evitar congelamiento.
Peso de Embarque	25 kg
(Aproximado):	
Punto de Inflamación	>148°C
Setaflash):	

Ensayo/Cerfiticación/Listado

INTERTEK

- ☐ IEC 60332-3-22 Flame Propagation
- ☐ IEC 60754-1 Halogen Gas Content
- □ DEFSTAN 02-711-2 Smoke Index

FM GLOBAL

- ☐ Factory Mutual Research Corp. Sandia Labs
- -Diesel (Bandeja portacables)
- -Propano (Bandeja portacables)

- Electrical Power System
- -Ampacidad No reduce la potencia nominal de transporte de los cables (No derating of cables required)
- -Reporte EPS 96202 Pintura retardante de fuego para Fuentes Eléctricas yC ables de Control a 1,6 mm (1/16")d ee spesor seco de película.

SPECSEAL® SSP MASILLA Y LAMINAS CORTAFUEGOS PARA SELLADO DE CAJAS ELÉCTRICAS

La masilla SpecSeal® SSP es un compuesto intumescente que no se endurece diseñado para sellar penetraciones pasantes además de determinadas penetraciones para membranas (caja de válvulas de gases médicos, válvulas para bañera y ducha, T de limpieza) contra la propagación del fuego, el humo y los gases calientes. La masilla SpecSeal® SSP se expande hasta ocho veces su tamaño original cuando se expone a altas temperaturas o las llamas.

No requiere herramientas, la masilla SpecSeal®SSP es suave y maleable, lo que hace fácil instalarla con la mano presionándola dentro de las aperturas. Su adhesión agresiva la hace adecuada para usarla con todos los materiales comunes de construcción, así como, para revestir cables y tuberías. La masilla SpecSeal®SSP permanece suave y es fácil de volver usar o renovar.

Las láminas de masilla SpecSeal® SSP proporcionan este mismo nivel de protección en una lámina revestida que se desprende para una fácil aplicación en cajas de conexiones y otros elementos penetrantes. La lámina está dimensionada para adaptarse a una caja 4S habitual de 38 mm (1- 1/2 pulg.) de profundidad sin necesidad de cortes o trozos. Cubierta por ambos lados con un revestimiento de polietileno, las láminas de masilla SpecSeal se aplican fácilmente sin desordenes ni residuos excesivos.

Aplicaciones

La masilla y las láminas de masilla SpecSeal®SSP se utilizan para sellar penetraciones pasantes además de separaciones de la construcción y aperturas vacías. Las láminas de masilla SpecSeal SSP se utilizan para sellar alrededor de las cajas de conexiones para reducir la transmisión del sonido (consulte la actualización técnica) y para aumentar la resistencia a incendios. Estas láminas además proporcionan un método dosificado de aplicación al sellar penetraciones pasantes y, en algunas aplicaciones, se utilizan para proporcionar un amortiguador para permitir el movimiento debido al asentamiento, la expansión y contracción, o la vibración.

Especificaciones

La masilla cortafuego debe ser un compuesto intumescente de un componente y dos etapas que no se endurece. La masilla, cuando se expone a un calor alto o llamas debe ser capaz de expandirse un mínimo de cinco veces. El rango de expansión continua debe ser desde 110°C hasta menos de 538°C (230°F hasta menos de 1.000°F). La masilla debe ser suave y maleable, con una adhesión agresiva y no debe contener ningún ingrediente intumescente soluble en agua. La masilla debe estar certificada por UL o FM Systems y probada según los requisitos de las normas ASTM E814 (UL1479), CAN/ULC-S115 y UL263 (ASTM E119, NFPA 251).

Divisiones especificadas

División 7 07 84 13 Cortafuego de penetración

División 26 26 00 00 Eléctrico

División 27 27 00 00 Comunicaciones

Desempeño

La masilla y las láminas de masilla Spec Sedian probado de acuerdo con las normas ASTM E814 (UL1479), CAN/ULC-S115 y UL263 (ASTM E119, NFPA251) y tienen certificación para hasta 2 horas como un material protector para aperturas en muros para usar con cajas de salida o interruptores metálicas o no metálicas en conjuntos de muros con tableros de yeso (conjuntos de entramado de acero y madera). Las cajas protegidas con las láminas de masilla SpecSeal®se probaron exitosamente con un espacio de la caja reducido a menos de 406 mm (16 pulg.).

PROPIEDA	ADES FÍSICAS
Color	Rojo
Olor	Ninguno
Densidad	1,45 kg/l (12,08 lb/gal)
Contenido de sólidos	100%
Tasa de crecimiento de moho y hongos (ASTM G21)	1
Volumen de expansión	Mayor al 500% (expansión libre)
Comienzo de la expansión	110°C (230°F)
Temperatura en servicio	-23°C (10°F) a 49°C (120°F)
Temperatura de instalación	Menos de 38°C (100°F)
Temperatura de almacenamiento	Menos de 38°C (100°F)
Clasificación STC (ASTM E 90-04/ ASTM C919)	62 (Relacionado con la construcción específica)
VOC*	0 g/l
Vida útil	Sin límite

SPECSEAL® SSP MASILLA Y LAMINAS CORTAFUEGOS PARA SELLADO DE CAJAS ELÉCTRICAS

Limitaciones

Este producto fue diseñado para un uso seguro con plásticos. Este se ha utilizado ampliamente y con éxito junto con diversos tipos de tuberías, tubos y aislamientos de cable plásticos. Sin embargo, las variaciones en estos materiales impiden garantizar la compatibilidad. STI recomienda encarecidamente al usuario que

consulte al fabricante de las tuberías, tubos o cables sobre cualquier sensibilidad conocida o posibles restricciones antes de aplicar este producto.

Mantenimiento

Las instalaciones se deben inspeccionar periódicamente en busca de daños posteriores. Cualquier daño se debe reparar utilizando productos Spec[®]Sealsegún el diseño original aprobado.

Selección del sistema

Para encontrar un sistema cortafuego o crear una presentación, visite <u>systems.stifirestop.com/</u> para usar la Búsqueda de sistemas y generador de presentaciones. También puede visitar el Directorio en línea de certificaciones UL/iQ de productos de ULTM para ver listados completos. (Sistemas cortafuego).

Características y ventajas

- · No se endurece = fácil renovación
- · Pellenos endotérmicos, absorben calor y liberan agua
- Fórmula altamente adhesiva, permanece puesta, permite el movimiento
- · Suave y maleable para facilitar la instalación
- Sin ingredientes expansivos solubles en agua lo que significa una mejor resistencia al agua
- Excelentes propiedades de atenuación del sonido
- · Peduce la transmisión del ruido

Limpieza

Quite inmediatamente el exceso de material de todas las superficies de contacto. Limpie las manos y la piel con un limpiador de manso sin agua. Cuando utilice jabones que se emulsifican con el agua, aplique el jabón y trabaje sobre las áreas de contacto con la piel antes de aplicar agua.

Servicio técnico

Specified Technologies Inc. proporciona asistencia técnica de cobro revertido para ayudarlo en la selección de productos y el correcto diseño de instalación. Los diseños de sistemas UL adecuados para fines de presentación o especificaciones están disponibles a pedido. Se proporciona una biblioteca completa de información técnica en el sitio web de la empresa www.stifirestop.com que incluye Hojas de datos de seguridad (SDS).

Información preventiva

Consulte las hojas de datos de seguridad para obtener información adicional sobre la manipulación y desecho seguros de este material. Lave las áreas de contacto con la piel con agua y jabón. Evite el contacto con los ojos. NO APLIQUE A CONDUCTORES ELÉCTRICOS EXPUESTOS.

Disponibilidad

La masilla SpecSeal® serie SSP está disponible con los distribuidores autorizados de Specified Technologies Inc. (STI). Para obtener información adicional de compra y técnica o para obtener los nombres y la ubicación del representante o distribuidor más cercano, de este u otros productos de Specified Technology, llame al 1-800-992-1180 o visite www.stifirestop.com.

INFORMACIÓN DE PEDIDO					
Número de catálogo	Número UPC	Tamaño	(EOM) cant.	Cant. por caja	Peso (Cada uno)
SSP100	730573021002	Barra de 0,6 litros (36 pulg.3)	1	6	1.01 kg (2,22 lb)
SSP28	730573021019	Barra de 0,4 litros (24 pulg.3)	1	1	0,64 kg (1,42 lb)
SSP4S	730573022009	Lámina de 184 x 184 mm x 4,8 mm (7,25" x 7,25" x 3/16")	1	20	0,29 kg (0,64 lb)
SSP9S	730573023006	Lámina de 229 x 229 mm x 4,8 mm (9,00" x 9,00" x 3/16")	1	20	0,39 kg (0,85 lb)

AVISO IMPORTANTE: TODAS LAS AFIRMACIONE S, INFORMACIÓN TÉCNICA Y RECOMENDACIONE S QUE CONTIEN E ESTE DOCUMEN TO SE BASAN EN PRUEBAS QUE SE CONSIDERA N CONFIABLE S, PERO NO SE GARANTIZA LA EXACTITUD NI LA INTEGRIDAD DE ESTAS.

STI HABITU ALMENT E GARANTIZA SUS PRODUCTOS POR UN AÑO COMPLETO. PARA VER DETALLES COMPLETOS DE NUESTRA GARANTÍ A ESTÁNDA R, VISITE WWW.STIFIREST OP.COM/

MEMBER

HECHO EN EE.UU. - © 2021 SPECIFIE D TECHNOLOGIES INC.

D

FR PUTTY PAD MASILLA CORTAFUEGOS PARA SELLADO DE CAJAS ELÉCTRICAS

PLACA INTUMESCENTE AUTOADHESIVA PREFORMADA

Carcaterísticas Técnicas

- Las Cajas de pared se pueden montar espalda con espalda.
- Las cajas se pueden montar en puntas de acero y madera.
- Hasta 120 minutos de integridad y resistencia de aislamiento.
- Rápido y fácil de instalar.
- Para paredes flexibles con un espesor mínimo de 75 mm.
- Se puede usar en pardes aisladas y sin aislamiento.
- Probado con una amplia gama de cables y conductos interconectados entre cajas.
- Probado con conductos vacíos entre cajas para futuros tránsitos de cables.
- Material de grafito patentado de expansión rápida de gama alta.
- Sin emisiones ambiental y fácil de usar.
- Tiempo de almacenamiento ilimitado (en condiciones correctas).
- 50 años de vida útil.

Descripción

La placa de grafito FR Protecta® es una placa intumescente autoadhesiva preformada que se utiliza para restablecer el rendimiento de resistencia al fuego de las construcciones de paredes flexibles cuando se perforan con cajas de pared de plástico. Se utiliza cuando las paredes han sido provistas de aberturas para la penetración de conductos y cables en cajas de enchufes, en uno o ambos lados de la pared.

La placa de grafito reacciona inmediatamente al fuego a través del calor y automáticamente se expande y llena la caja, evitando que pase el fuego.

La instalación de la placa de grafito FR Protecta® restablecerá el rendimiento de resistencia al fuego de las construcciones de paredes flexibles hasta por 120 minutos. También evita el paso del fuego a través de los conductos eléctricos entre cajas de enchufes

Aprobación técnica:	EAD 350454-00-1104
Prueba de fuego – EN13501- 2:	El 30 - 120
Durabilidad - ISO 8339:	Z2 diseñado para uso en condiciones internas con clases de humedad diferentes a Z1, excluyendo temperaturas por debajo de 0°C.
Procedimiento de acondicionamiento:	EN 13238:2010
Ralacion de Expansión:	17:1
Presión de expansión:	65.4 N
Color:	Gris claro con destellos plateados
Textura:	Superficie texturizada
Acabado:	Acabado mate por un lado, otro lado satinado
Espesor:	Aproximadamente 3.8mm
Peso por unidad de superficie/longitud:	5.1 Kgm2
Densidad:	1,409Kgm3.
Tiempo óptimo de expansión:	2 minutos
Temperatura óptima de expansion:	550°C
Uso:	Suministrado listo para encajar
Almacenamiento:	Almacenar a temperaturas entre 5°C y 30°C
Vida:	Bajo condiciones normales; 50 años +

Guía general

Separaciones mínimas y limitaciones: Las cajas de enchufes se pueden volver a instalar atrás o uno al lado del otro, uno ajustado a cada cara, y también se puede usar en la situación en la que una caja de enchufe penetra solo por un lado de la pared y el lado restante de la pared no se penetra en el mismo punto (es decir, los servicios continúa en el interior de la pared). Se pueden colocar cajas de enchufes con distancia cero, o más separados.

Construcciones de soporte: Las paredes flexibles deben tener un espesor mínimo de 75 mm y compuesta por montantes revestidos por ambas caras con mínimo 1 capa de Tableros de 12,5 mm de espesor. La construcción de soporte debe clasificarse en según EN 13501-2 para el período de resistencia al fuego requerido.

Instalación

- 1. Las cajas de pared deben instalarse de acuerdo con las instrucciones del fabricante, y puede ser fijado directamente a montantes de paneles de yeso o a madera Noggins o placas de acero fijadas a pernos
- 2. La abertura alrededor de la caja de pared debe ser tan ajustado como sea posible y cualquier espacio relleno con masilla de yeso o Protecta® FR Acrílico.
- 3. Antes de instalar la placa de grafito Protecta® FR Asegúrese de que las superficies estén limpias y sanas, libre de suciedad, grasa otros contaminación.
- 4. Retire el papel protector de la parte posterior de la almohadilla.
- 5. Encajar en su lugar en el interior en la base del zócalo, caja.
- 6. La almohadilla no debe obstruir la entrada del cable.

paneles de yeso

RESISTENCIA AL FUEGO Hasta por 120 minutos.

Clasificaciones

AISLAMIENTO ACUSTICO

DescripciónReducción de sonidoPlacas de grafito para enchufes, una cara enRw dB

La placa de grafito Protecta® FR ha sido probada en Warringtonfire (UKAS autorizado); según EN ISO 10140-2:2010. El informe de prueba está disponible a pedido.

ALMACENAMIENTO

Embalaje	Se suministran embalados en cajas, normalmente laminas/caja
Almacenamiento:	Almacenar a temperaturas entre 5°C y 30°C

Estándares de prueba

Esta Ficha Técnica y las Instrucciones de Instalación se basan en la Evaluación Técnica Europea del producto emitida de acuerdo con reglamento (UE) n.º 305/2011 sobre la base del EAD 350454-00-1104, Septiembre de 2017, probado según EN 1366-3 junto con EN 1363-1. El el producto tiene las siguientes marcas de aprobación; Marca CE para Europa.

LÁMINAS DE MASILLA RESISTENTES AL FUEGO

Descripción

Las laminas de masilla Protecta FR PUTTY PAD es un sellador resistente al fuego y al sonido, fácil de aplicar que se suministra como una masilla que no Fragua. La lamina se puede trabajar a mano, reutilizar y volver a reparar debido a sus propiedades de no fraguado.

Cuando se instalan enchufes e interruptores eléctricos en tabiques de revestimiento seco, se compromete la clasificación de Resistencia al fuego original del tabique. El montaje de Protecta FR PUTTY PADS mantendrá la clasificación de resistencia al fuego del tabique hasta por dos horas (según la clasificación al fuego de la pared) e impedir el paso de humos , llamas en un incendio y el sonido.

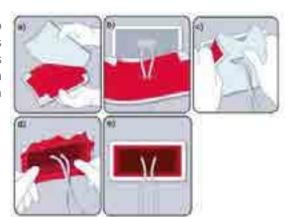
Las laminas de masilla Protecta FR PUTTY PAD están diseñadas para usarse en instalaciones de enchufes eléctricos simples y dobles en paredes de revestimiento seco.

Los PADS se suministran en forma de cruz para la instalación interna de la caja de enchufe y en forma rectangular para aplicación en la parte exterior de la caja de enchufe .

Clasificación al fuego

CAJA DE ENCHUFE CLASIFICACION

Construcciones de Paredes de	Material Liviano >100 mm	
Calas de enchufes de plástico estàndar de hasía 130 mm de anche y 70 mm de alte y 47 de proluncidad		E: 60
Cejas de enchures de plastico estándar de hasta 154 mm INTERIOR DE LA CUA DE ENCHURE COMPLETAMENTE		E 90
de anché s 74 cm de alto a 47 de profuncidad	FOORAGE CONTA LANSING -	El 60
Cajas de enchufes de plástico estándar de hasía 134 mm de embo a 74 mm de alto e 47 de profundidad con 21	11222	E 120
min cala de extensión metal		El 60
Cajas de erchofes de acero estàndar de hasta 124 mm de ancho x 74 mm de alto x 35 mm de profundidad, emputrable con un máx, de espación de 15 mm entre la caja y placa de veso	INTERIOR DE LA CAIA DE ENCHUPE Y BRECHA ENTRE LA CAIA Y PLACA	El 90
Schneider IMT 56026 cajas de conexiones de plásticos , 72 mm de ancho x 90 mm de alto x 50 mm de profundidad	LAMINA INSTALADO EN LA ESPALDA DE LA CAJA TRASERA	£ 60
p disholoso		E) 45
EUXO 4189 1213720 caja de conexiones de plásticos de 72 mm de ancho x 90 mm de alto x 55 mm de profundidad	INTERIOR DE LA CAJA DE ENCHUPE COMPLETAMENTE	E: 00
ÉLNO 5421 125720 caja de coriexiones de plásticos de 72 mm de ancho x 90 mm de alto x 58 mm de profundidad	The second secon	E) 90
Construcciones de Paredes de	Material Liviano >120 mm	
Cejaa de enchufes de plástico estánder de hasto 190 mm de ancho x 70 mm de aito x 48 de profuncidad	INTERIOR DE LA CAJA COMPLETAMENTE PORRADO CON LA JAMINA	El 120



Guía general

Separaciones mínimas y limitaciones: Las cajas de enchufes se pueden colocar espalda con espalda o una al lado de la otra con una distancia cero, o mas separadas en ambos lados También se pueden colocar en un solo lado de la pared , donde el lado restante de la pared no está perforado en el mismo punto

Soporte de construcción: Las paredes de material liviano deben tener un espesor mínimo de 100 mm y estar formados por montantes de acero o de madera*) revestidos en ambas caras con un mínimo de 2 planchas de 12.5 mm de espesor. La construcción de soporte debe estar clasificada de acuerdo con EN 13501-2 para el período de Resistencia al fuego requerido.

*) Montantes de Madera: Ninguna parte del sellado de penetración puede estar a menos de 100mm de un montante, y se debe proporcionar un mínimo De 100 mm de aislamiento de clase A1 o A2 dentro de lacavidad entre el sellado de penetración y el montante

Instalación

- 1- La abertura en la pared debe estar lo más ajustada posible al enchufe. La caja y los huecos rellenados con masilla de yeso o acrílico Protecta FR. Las cajas de enchufes se pueden fijar directamente a los montantes o a las placas de acero fijadas a los montantes.
- 2- Antes de instalar Protecta FR Putty Pad asegurarse que las superficies estén limpia y en buen estado , libre de grasa u otra contaminación.
- 3- Retire el papel protector de un lado de la lamina.
- 4- Montaje Interno : Inserte la lamina en la caja posterior del zócalo para que la lamina cubra completamente la parte trasera y los lados. Haga un orificio para permitir que los cables pasen a través de la lamina. Recorte cualquier exceso de material.
- 5- Montaje Cara Exterior : Coloque la lamina sobre la caja por el exterior de está de modo que la lamina cubra completamente el exterior de la caja. Puede ser necesario o no hacer un orificio en la lamina para que pasen los cables dependiendo de la instalación.
- 6- Retire el ultimo papel de respaldo

Estándares de prueba

Estas instrucciones de instalación y la hoja de datos técnicas se basan en la evaluación técnica Europea del producto emitida en conformidad con el reglamento (EU) No 305/2011 sobre la base EAD 350454-00-1104, septiembre 2017, probado segun EN 1366-3 en conjunto con EN 1363-1. UL UK Techical Assessment 0843-UKTA- 22/0024 OF 31/10/2022

EZ PATH SERIES 44+ CONDUCTO RESISTENTE AL FUEGO PARA CABLES

El conducto resistente a incendios EZ Path® Serie 44+ es un conducto diseñado para permitir que los cables penetren paredes y muros resistentes a incendios sin la necesidad de cortafuego. Este dispositivo incluye un sistema de sellado incorporado contra incendios y humo que se ajusta automáticamente a la cantidad de cables instalados. Una vez que se instala en una barrera contra incendios, los cables se pueden agregar o quitar con facilidad en cualquier momento sin la necesidad de quitar o volver a instalar materiales cortafuego.

El conducto resistente a incendios EZ Path®Serie 44+ consta de un conducto cerrado de acero galvanizado de grueso calibre forrado con material intumescente diseñado para una rápida expansión cuando se expone al fuego o altas temperaturas, sellando rápidamente el conducto y evitando el paso de las llamas y el humo. El conducto resistente a incendios EZ Path® Serie 44+ está pintado pintado de color naranja de seguridad para facilitar su identificación. Su perfil cuadrado compacto permite instalar el máximo de cables en un área relativamente pequeña. El conducto mide aproximadamente 101.6 mm (4 pulg.) x 118 mm (4-5/8 pulg.), tiene 356 mm (14 pulg.) de largo y se puede aumentar en 152 mm (6") por cada módulo de expansión Serie 44+ (EZD44ES) que se instale.

Aplicaciones

El conducto resistente a incendios EZ Path® Serie 44+ está diseñado para una fácil instalación en pisos y muros. Las capacidades de cables probadas y aprobadas van desde un 0 a un 100% de llenado visual. Cuando se instala el conducto resistente a incendios EZ Path® Serie 44+ con las placas simples para muros su diseño permite nuevas instalaciones de cables. En estas instalaciones, el dispositivo no requiere fijaciones mecánicas al muro o al armazón de la pared y se debe instalar después de instalar el tablero. Las placas divididas para pisos y los soportes multicuerpo para muros y pisos permiten la instalación alrededor de cables instalados previamente, si así lo desea. Estas instalaciones requieren fijaciones mecánicas a la barrera. En los componentes disponibles en la página 2 hay una lista de accesorios disponibles junto con su uso previsto.

El conducto resistente a incendios EZ Path® Serie 44+ proporciona una capacidad excepcional para cables. Una sola unidad instalada en una pared supera la capacidad de cables de una funda de 152 mm (6 pulg.) que utiliza los típicos sistemas cortafuego de masilla (35% de carga de cables). Varios conductos agrupados utilizando los juegos de soportes para muros proporcionan capacidad adicional o permiten la separación de los cables por uso, tipo, instalador o proveedor, según desee.

Especificaciones

Todos los mazos de cables de datos, video y comunicaciones deben utilizar un conducto cerrado resistente a incendios cada vez que dichos cables penetren muros y pisos resistentes a incendios. El sistema del conducto resistente a incendios debe contener un sistema incorporado de sellado contra incendios para mantener la clasificación horaria contra incendios de la barrera que penetra. El sistema de sellado autocontenido se debe ajustar automáticamente a la carga instalada de cables y debe permitir la instalación, extracción y renovación de los cables sin la necesidad de quitar o volver a instalar los materiales cortafuego. El conducto debe estar certificado por UL o FM Systems y probado según los requisitos de las normas ASTM E814 (UL1479) y CAN/ULC-S115.

PROPIEDADES FÍSICAS				
Composición de la carcasa	Acero galvanizado 1,5 mm (0,059")			
Área de carga de cables	81,7 cm2 (12,66 pulg. cuadradas) 86 mm (3-3/8") x 95 mm (3 3/4")			
Llenado permitido con cable	Visual de 0% a 100%			
Clasificación de resistencia a incendios	1, 2, 3, y 4 horas			
Comienzo de la expansión	177°C (350°F)			
Volumen de expansión	15x			
Volumen del cable de muestra; Ct 6 (DE 0,236")	210 (nom.)			
Temperatura en servicio	-23°C (-10°F) a 49°C (120°F)			
Temperatura de almacenamiento	Menos de 49°C (120°F)			
Vida útil	Sin límite			

synixtor

Divisiones especificadas

División 7 07 84 13 Cortafuego de penetración

División 26 26 00 00 Eléctrico

División 27 27 00 00 Comunicaciones

Desempeño

El conducto resistente a incendios EZ Path®Serie 44+ está probado por UL y certificado según las normas ASTM E814 (UL1479) y CAN/ULC-S115. Hay sistemas disponibles para las construcciones comunes de pisos y muros con clasificaciones de hasta e incluso 4 horas.

Limitaciones

Este producto fue diseñado para un uso seguro con plásticos. Este se ha utilizado ampliamente y con éxito junto con diversos tipos de tuberías, tubos y aislamientos de cable plásticos. Sin embargo, las variaciones en estos materiales impiden garantizar la compatibilidad. STI recomienda encarecidamente al usuario que consulte al fabricante de las tuberías, tubos o cables sobre cualquier sensibilidad conocida o posibles restriccion es antes de aplicar este producto.

Características y ventajas

- · Fácil de instalar
- · No se requiere cortafuego
- · Cortafuego en todas las etapas de uso
- · Probado por UL; bajas fugas
- · Probado acústicamente
- · Certificado por UL en todo el rango de capacidad
- Diseño de interbloqueo para facilitar las instalaciones agrupadas
- Permite la separación de cables por uso, tipo, proveedor
- Más de dos veces la capacidad del conducto EZ Path33®

Instalación de cables

Los cables se pueden agregar o quitar fácilmente en cualquier momento sin quitar ni volver a instalar el sello contra incendios. Los cables se pueden agregar individualmente o en grupos. Envolver los extremos con una cinta de baja fricción facilita la inserción de los cables. El paso de cables que se ajusta automáticamente se adapta para que quepa el mazo de cables a medida que pasa a través del conducto.

Selección del sistema

Para encontrar un sistema cortafuego o crear una presentación, visite https://systems.stifirestop.com/ y generador de presentaciones. También puede visitar el Directorio en línea de certificaciones UL/iQTM de productos de UL para ver listados completos. (Sistemas cortafuego).

Servicio técnico

Specified Technologies Inc. proporciona asistencia técnica de cobro revertido para ayudarlo en la selección de productos y el correcto diseño de instalación. Los diseños de sistemas UL adecuados para fines de presentación o especificaciones están disponibles a pedido. Se proporciona una biblioteca completa de información técnica en el sitio web de la empresa www.stifirestop.com que incluye Hojas de datos de seguridad (SDS).

Información preventiva

El uso de este dispositivo está sujeto a los códigos locales, regionales y nacionales. Consulte al funcionario a cargo del código de construcción o la autoridad que tenga jurisdicción respecto de cualquier requisito regional o local que pueda influir en la selección o uso de este producto.

Disponibilidad

Los productos EZ Path[®]están disponibles con los distribuidores autorizados de Specified Technologies Inc. (STI). Para obtener información adicional de compra y técnica o para obtener los nombres y la ubicación del representante o distribuidor más cercano, de este u otros productos de Specified Technology, llame al 1-800-992-1180 o visite www.stifirestop.com

Patentes

US2007175125A1; US7427050B2; US2007125018A1; US7523590B2; US2006138251A1; US7373761B2; US2014020915A1; US8869475B2; CA2427515A1; CA2427515C; EP3355997A1; EP3355997A4; EP3355997B1; EP3355997B8

SELLOS CORTAFUEGO DE PASADAS Y JUNTAS

FIP 1 STEP 3M ESPUMA CORTAFUEGO INTUMESCENTE BICOMPONENTE

Espuma Corta Fuego FIP 1-Step, es una espuma bi-componente que actúa como una barrera de fuego, barrera de humoy un aislante de sonido, en especial para ser usado en penetracionesde pared y piso. Está formada por la unión de dos productos (A+B) y una formulación muy fácil de aplicar que se transforma en una espuma sólida, flexible y conformable. Se expande

hasta 5 veces durante su instalación y los tiempos de expansión son muy rápidos, mejorando la productividad del proceso de sellado. Se adhiere a la mayoría de sustratos de construcción, incluyendo hormigón, metal, madera, plástico y cables. Durante un incendio, el producto actúa como un cortafuego hermético para humo y llamas.

Fire Barrier Barrier MEDITALISTON

- · Calificación: Intumescente/Ignífuga.
- Espuma reparable/reutilizable.
- Excelente adherencia versus espumas tradicionales.
- Se puede pintar usando Primers.
- Curado rápido y elimina la necesidad de lana mineral y masilla.

Certificaciones

- Es una Espuma Certificada como barrera de fuego.
- · Homologación UL.
- Cumple con la norma ASTM E 814.
- Cumple con el Código de Construcción Internacional para la protección pasiva contra incendios.

Especificaciones

FIP 1-STEP FUE TESTEADA EN ENSAYOS SEGÚN LAS NORMAS:

ASTM E 814 / UL 1479

Standard Test Method for Fire Test of Penetration Firestop Systems (Método estándar de ensayos de fuego para tests de penetración en sistemas cortafuegos).

ASTM E 84 / UL 723

Standard Test Method for Surface Burning Characteristics ofbuildings Materials (Método de prueba estándar para superficies combustible de materiales de construcción).

ASTM E 90

Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements.

ASTM E 413

Classification for rating Sound insulation (Clasificación para aislamientos acústicos).

FIP 1-STEP

Deberán cumplir los requisitos de IBC, IRC, la CFI, el IPC, IMC, NFPA 5000, NEC (NFPA 70), NFPA 101 y NBC.

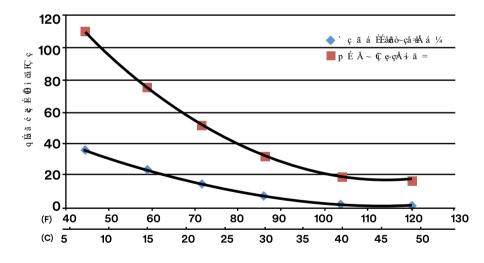
ESPECIFICACIONES

División 7 Section 07 84 00F irestopping Section 07 27 00A ir Barriers Related Sections Section 07 86 00-Smoke Seals Section 07 87 00-Smoke Containment Barriers

Section 26 00 00-E lectrical

Section 21 00 00+ ire Suppression Section 22 00 00+ lumbing

Aplicaciones


Las aplicaciones típicas incluyen: Perforaciones en paredes y pisos, cañerías plásticas y metálicas, cables, bandejas porta-cables, sellos de pasadas en tabiques de concreto, yeso cartón y fibrocemento, pasadas de ductos de ventilación y sellos de pasadas en general.

Almacenamiento y vida útil

FIP 1-Step se debe almacenar bajo techo en un lugar seco entre 5°C y 30°C. Evitar exponer el producto a congelamiento y/o descongelación. Si el producto se congelara, se sugiere descongelarl entamente y llevar el producto a la temperatura de aplicación según sección 5. FIP 1-Step tiene una vidaú til de 12 meses en envase original y sin abrir.

Propiedades técnicas

COLOR:	Café - Marrón.		
RANGO DE TEMPERATURA DE APLICACIÓN:	10°C a 49°C.		
VOLUMEN CATRIDGE:	380 ml.		
RENDIMIENTO:	Hasta 1,9 L / 1900 cc.		
CURADO:	La espuma se expande a partir de unos segundos. El curado completo depende de las condiciones ambientales y la temperatura del producto A 24°C el curado total se obtiene aproximadamente a los 2 minutos.		
VOC (MENOS H2O Y DISOLVENTES EXENTOS):	<250 g / L.		
LEED:	Cumple con regulaciones de VOC para LEED.		
SUPERFICIE BURNING (ASTM E 84):	Propagación de la llama 10, desarrollo de humo 50.		
STC BARRERA ACÚSTICA (ASTM E 90 Y ASTM E 413)	57 cuando se probó en la STC 57 en pasadas de pared.		
FUGA DE AIRE (UL 1479 SECCIÓN 6):	<1 CFM / pies cuadrados.		

TIEMPOS DE EXPANSIÓN VERSUS TIEMPOS DE SECADO AL TACTO

A temperaturas altas se acelera el proceso de curado y de expansión de la espuma. A altas temperaturas se disminuyen los tiempos de trabajo.

Instalaciones

PREPARACIÓN DE SUPERFICIE

La superficie y cualquier elemento en contacto con la espuma, deben estar limpios para permitir la correcta adherencia de la Espuma Corta Fuego FIP 1-Step. Asegúrese de que las superficies no estén húmedas y estén libres de polvo, suciedad y heladas.

Detalles de instalación

Instale la Espuma Corta Fuego FIP 1-Step usando para ello las recomendaciones y sistemas sugeridos por UL.

La Espuma puede ser recortada después de la instalación al nivel de los materiales. Limpiet odas las herramientas inmediatamente después de cada uso. Aplique con aplicador HandyMax S/N: 9804005647-9.

Limitaciones

No aplicar la espuma 3M cuando la temperatura del cartucho sea menor a 10°C, puede producir daños al cartucho o al equipo de dispensación. No aplique el producto cuando los materiales de construcción estén contaminados con aceite, plastificantes o disolventes (por ejemplo, madera impregnada, selladores a base de aceite, materiales vulcanizados). No aplique FIP 1-Step en superficies o zonas húmedas o recubiertos de heladas que son continuamente húmedos sumergido en agua. Este producto no es recomendable para

Este producto no es recomendable para su uso con tuberías de cloruro de polivinilo clorado (CPVC).

MANTENCIÓN

No necesita ningún mantenimiento cuando se instala de acuerdo con las directrices de instalación del fabricante. Una vez instalado, si cualquiersección de la Espuma IP 1-Step está dañado, se aplicará el siguiente procedimiento: Retirda espumay re-instala la sección dañada de acuerdo con la aplicación sugerida por los sistemas UL.

FORMATO

El producto está disponible en cartuchos de 380 ml. 6 Catridge por caja. S/N: 9804005645-3

SEGURIDAD

Consultar la Hoja de Seguridad del Producto MSDS.

FWBT 3M CINTA CORTAFUEGO PARA JUNTAS Y MURO CORTINA

3M Fire and Water Barrier Tape

Brinda protección contra incendios, agua y humo en juntas de construcción y perimetrales

Funciona como barrera acústica al minimizar la transferencia de ruido.

Funciona en un amplio rango de temperatura

El adhesivo de alta fijación funciona con los materiales de construcción más comunes

Detalles

La cinta de barrera contra incendios y agua de 3M ™ es una cinta elastomérica a prueba de fuego, agua, humo y sonido. Cuando se instala correctamente, puede actuar como una barrera para las fugas de agua y la transmisión de sonido en el aire, al tiempo que ayuda a controlar la transmisión de fuego, calor y humo.

Sella y protege en dos simples pasos: seleccione el tipo, el tamaño y la cantidad de cinta adecuada para su aplicación La cinta de barrera contra incendios y agua 3M ™ puede proporcionar hasta 4 horas de protección contra incendios en juntas de construcción según ASTM E 1966 (UL 2079), 3 de protección contra incendios durante horas en juntas perimetrales según ASTM E 2307 y protección contra incendios de 2 horas en aplicaciones de penetración directa según ASTM E 814 (UL 1479).

Aplicaciones

Protección contra incendios en juntas de construcción y perimetrales Protección contra incendios en penetraciones Barrera acústica Barrera para filtraciones de agua

Este material elástico mantiene el rendimiento con capacidades de movimiento de hasta +/- 50%. Tiene un adhesivo de alta calidad que funciona con los materiales de construcción más comunes y excede el mínimo AAMA 711 para la adhesión en el despegado. Además, se puede instalar a temperaturas tan bajas como -18 ° C) y tan altas como 49 ° C. Su versatilidad es un adhesivo único que se adhiere a superficies húmedas. Este producto actúa como una barrera acústica al minimizar la transferencia de ruido (clasificación STC de 54 cuando se prueba en un conjunto de pared con clasificación STC 54), cumple con la intención de las pautas ambientales LEED® VOC y también actúa como una barrera inmediata contra la fuga de agua que pasa Prueba de resistencia a la lluvia ASTM D 6904. Nuestra cinta de barrera contra incendios y agua de 3M ™ cumple con los requisitos actuales del Código Internacional de Construcción (IBC). NFPA 5000 y NFPA 101.

Rendimiento Tipico y propiedades Fisicas

Tamaños disponibles	2 pulgadas x 75 pies (51 mm x 22,8 m)	24 rollos/caja		
	3 pulgadas x 75 pies (76 mm x 22.8 m)	16 rollos/caja		
	4 pulgadas x 75 pies (101 mm x 22,8 m)	12 rollos/caja		
	6 pulgadas x 75 pies (152 mm x 22,8 m)	8 rotos/caja		
	8 pulgadas x 75 pies (202 mm x 22,8 m) 4 rollosicaja			
	12 pulgadas x 75 pies (303 mm x 22,8 m) 4 rollosi	'caja		
Cobertura (pies cuadrados/rollo)	12,5 (2 pulgadas), 18,75 (3 pulgadas), 25 (4 pulga 50 (8 pulgadas), 75 (12 pulgadas)	das), 37,5 (6 pulgadas),		
Características de combustión superficial (ASTM-E84)	Îndice de propagación de llama: 10 Valor desarrollado de humo: 10			
	Al concreto: >55 oz./pulg.			
Adhesión (oz./puig. de ancho, según ASTM D3330)	A yeso: >55 oz./pulg. Para acero inoxidable: >60 oz./pulg. Para aluminio anodizado: >60 oz./pulg. A OSB: >50 oz/pulg.			
Clauficación STC	63 en una pared con clasificación 63 (cuando se i	nstala con lana mineral)		
(ASTM E90/ASTM E413)	62 en una pared con clasificación 63 (solo cinta, s			
Resistencia a la lluvia (exposición de 24 horas; ASTM D6904)	Pasar (inmediatamente después de la solicitud)			
Resistencia al moho y los hongos (ASTM G21/ASTM D4300)	0% de crecimiento			
Grosor de la cinta	10 millionas de pulgada (0,25 mm)			
Temperatura de servicio. Rango	-40 a 240 °F (-40 a 116 °C)			
Resistencia a la tracción (membrana recubierta, psi) (ASTM D882)	>1700			

Técnicas de instalación

Consulte a un distribuidor o representante de ventas autorizado de productos de protección contra incendios de 3M para conocer los planos y detalles del sistema aplicables de UL, ULC, Intertek u otros terceros.

Equipo: La cinta de barrera contra incendios y agua 3M™ se puede aplicar completamente a mano o con la ayuda de una espátula v un rodillo.

Trabajo preparatorio: Las superficies deben estar libres de escarcha y limpias; cepillado, barrido o soplado para eliminar el polvo y los escombros. Para una adhesión óptima, la superficie del concreto debe ser una superficie lisa de acero flotado, o equivalente, que esté libre de aditivos químicos y/o compuestos que puedan inhibir la adhesión. Para superficies más rugosas (por ejemplo, acabado con escoba), es posible que sea necesario aumentar la superposición de la cinta sobre el sustrato para lograr una adhesión óptima. Consulte con su representante local de 3M para determinar los acabados aceptables y las superposiciones requeridas.

Detalles de instalación: Se deben seguir los detalles del sistema probado y listado para cada aplicación específica. Instale aislamiento de fibra mineral de acuerdo con los detalles del sistema en cuanto a densidad, profundidad y requisitos de compresión. Aplique la cinta de barrera contra incendios y agua 3M™. La cinta debe aplicarse sobre el aislamiento, los sustratos adyacentes y el penetrante (si corresponde) manteniendo todas las superposiciones requeridas de acuerdo con los detalles del sistema.

Limitaciones: Se recomienda aplicar la cinta de barrera contra incendios y agua 3M™ a una temperatura entre 0 °F (-18 °C) y 150 °F (65 °C). La cinta de barrera contra incendios y agua 3M™ se puede aplicar y se espera que se adhiera a superficies a 0 °F (-18 °C) o más, siempre que las superficies estén libres de escarcha, limpias y libres de polvo.

Mantenimiento

No se espera que se requiera mantenimiento cuando se instala de acuerdo con la Guía de instalación de la cinta de barrera contra incendios y agua de 3M™. Una vez instalada, si alguna sección de la cinta de barrera contra incendios y agua 3M™ está dañada, se aplicará el siguiente procedimiento:

Se debe inspeccionar el material aislante para garantizar que no haya humedad evidente. Luego, el área abierta o dañada debe cubrirse completamente con un producto nuevo, instalado como se detalla en el sistema original, probado y listado por terceros aplicable. El nuevo producto debe superponerse un mínimo de 1 pulgada (25,4 mm) al producto instalado anteriormente.

Almacenamiento y vida útil

La cinta de barrera contra incendios y agua 3M™ debe almacenarse en interiores, en condiciones secas, en el embalaje original. Para obtener el mejor rendimiento, utilice este producto dentro de los 24 meses a partir de la fecha de fabricación, que se puede determinar a partir del número de lote (que se encuentra en la etiqueta dentro del núcleo de cartón). El formato de la etiqueta es el siguiente:

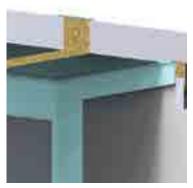
Nombre de la cinta – Número de orden de trabajo – Número de lote (por ejemplo, FWBT – 123456 – 634501) Numeración de lotes (por ejemplo, 634501): primer dígito = último dígito del año de fabricación, segundo a cuarto dígito = fecha juliana, últimos dos dígitos = aleatorio para distinguir entre números de lote. 634501 = 10 de diciembre de 2016

SPECSEAL® AS200 SELLADOR CORTAFUEGO ELASTOMÉRICO PARA JUNTAS Y MURO CORTINA

Aplicaciones

El pulverizador elastomérico SpecSeal® AS200 está diseñado principalmente para la protección de las juntas de construcción, las separaciones de seguridad para muro cortina y determinadas penetraciones pasantes.

Especificaciones


El revestimiento contra incendios de la junta debe ser un revestimiento elastomérico basado en agua, no halogénico que no contenga solventes, fibras inorgánicas ni asbesto. El revestimiento se debe secar para formar una película flexible, resistente a la humedad y se debe adherir a todas las superficies comunes de construcción. El revestimiento debe proporcionar hasta un 50 por ciento de movimiento. El revestimiento debe ser tixotrópico y se debe poder aplicar mediante aspersión sin aire, brocha o paleta. El revestimiento aprobado debe ser el pulverizador elastomérico SpecSeal AS200.

División 7 07 84 43 Cortafuego de juntas

División 7 07 84 53 Cortafuego del perímetro de la edificación

División 8 08 44 00 Conjuntos de muro cortina y vidriados

Desempeño

El pulverizador elastomérico SpecSeal®AS200 junto con los materiales de

respaldo adecuados han sido probados en juntas de una, dos, tres y cuatro horas de acuerdo con las normas ASTM E1966 (ANSI/UL2079), ASTM E814 (ANSI/UL1479) y CAN/ULC S115. Este producto también fue probado para su uso en sistemas de barreras perimetrales contra incendios de acuerdo con la norma ASTM E2307. Consulte a la fábrica para ver diseños de sistemas individuales y los requisitos de aplicación.

Limitaciones

Utilice el producto según las instrucciones del fabricante. Utilícelo solo en aplicaciones según los diseños publicados o las recomendaciones específicas del fabricante. Finalmente el usuario final debe determinar la idoneidad del producto o el diseño para sus necesidades específicas y asume la responsabilidad de su uso. EL PRODUCTO CONTIENE AGUAY ES CONDUCTOR HASTA QUE ESTÉ SECO. NO APLIQUE EN PRESENCIA DE CONDUCTORES ELÉCTRICOS EXPUESTOS O CON ENERGÍA.

Este producto fue diseñado para un uso seguro con plásticos. Este se ha utilizado ampliamente y con éxito junto con diversos tipos de tuberías, tubos y aislamientos de cable plásticos. Sin embargo, las variaciones en estos materiales impiden garantizar la compatibilidad. STI recomienda encarecidamente al usuario que consulte al fabricante de las tuberías, tubos o cables sobre cualquier sensibilidad conocida o posibles restricciones antes de aplicar este producto.

Mantenimiento

Inspección: Las instalaciones se deben inspeccionar periódicamente en busca de daños posteriores. Siguiendo las precauciones de seguridad detalladas a continuación (consulte la información preventiva) y las correspondientes pautas de instalación, quite el revestimiento en las áreas dañadas hasta llegar al material no dañado. Vuelva a aplicar material de revestimiento nuevo hasta lograr al grosor del revestimiento original.

Características y ventajas

- Basado en agua para facilitar la instalación y la limpieza
- · No halogenado
- Tixotrópico para una alta aplicación en construcción
- · Adherencia automática
- Seguro, sin solventes, sin asbesto, sin PCB, sin fibras inorgánicas
- Flexible
- · Resistente al agua
- Abrasión baja para una mayor vida útil en la bomba y menos mantenimiento
- · Certificado por UL
- Probado con materiales resistentes a incendios aplicados mediante pulverización (SFRM)
- · Se puede pintar cuando está seco
- Cumple con los requisitos de LEED™ v3, v4 y v4.1. Crédito por materiales de baja emisión.
 Consulte la certificación LEED para ver los créditos adicionales que correspondan.

PROPIEDADES FÍSICAS						
Color	Azul pálido o rojo	Viscosidad	130.000 ср			
Densidad/Peso por galón	1,28 kg/l (10,7 lb/gal)	рН	7,5			
Contenido de sólidos por peso	ontenido de sólidos por peso 74,0%		Ninguno			
Contenido de sólidos por volumen 66,5%		Temperatura en servicio	Menos de 85°C (185°F)			
Propagación de llamas*	10	Temperatura de almacenamiento				
Desarrollo de humo*	humo* 0 Temperat		4°C (40°F) a 35°C (95°F)			
Tasa de crecimiento de moho y hongos (ASTM G21)		Tiempo de secado ^A (ASTM D1640)	Endurece en 2 horas Secado en 24 a 48 horas			
Capacidades de movimiento***	+/- 50%	Clasificación STC (ASTM E90-04/ASTM C919)	60 (Relacionado con la construcción específica)			
		Contenido VOC**	23 g/l			
Cobertura	0,31 m cuadrados/l a 3,2 mm de grosor húmedo (12,8 pies cuadrados/gal a 1/8 pulg. de grosor húmedo)	Vida útil almacenado desde la fecha de fabricación	24 meses			

^{*}Probado de acuerdo con ASTM E84 (UL723) con un 14% de cobertura de la superficie (prueba modificada para selladores y masillas)

^{**} Según la regla 1168 de SCAQMD (Método 24 de la EPA)

^{***500} ciclos según las normas UL2079 AC30 (ICBO) y ASTM E1399

Selección del sistema

Para encontrar un sistema cortafuego o crear una presentación, visite https://systems.stifirestop.com/ para usar la Búsqueda de sistemas y generador de presentaciones. También puede visitar el Directorio en línea de certificaciones UL/iQTM de productos de UL para ver listados completos. (Sistemas cortafuego).

Servicio técnico

Specified Technologies Inc. proporciona asistencia técnica de cobro revertido para ayudarlo en la selección de productos y el correcto diseño de instalación. Los diseños de sistemas UL adecuados para fines de presentación o especificaciones están disponibles a pedido. Se proporciona una biblioteca completa de información técnica en el sitio web de la empresa www.stifirestop.com que incluye Hojas de datos de seguridad (SDS).

Información preventiva

Consulte las hojas de datos de seguridad (SDS) para obtener información adicional sobre la manipulación y desecho seguros de este material. Lave las áreas de contacto con la piel con agua y jabón. Evite el contacto con los ojos. Se recomienda el uso de una máscara aprobada por OSHA o NIOSH para el polvo y el rocío del ambiente. Aplique en áreas con la ventilación adecuada.

Equipo de aplicación

AVISO: La aplicación mediante rocío del pulverizador SpecSeal® AS200 requiere equipo de pulverización sin aire que cumpla con las siguientes especificaciones:

Presión de trabajo: Mínimo 2500 psi (172 bares)

Entrega: Se recomienda un mínimo de 2,7 l/min (0,72 gpm EE.UU.)

Orificio de la punta aspersora: Se recomienda 0,58 mm (0,023 pulg.) a 0,66 mm (0,026 pulg.)

Piezas que se mojan: todos los sellos y superficies de contacto deben ser aptas para entrar en contacto con emulsiones de látex.

Se requiere una tubería de líquido de un mínimo de 9,5 mm (3/8 pulg.), es preferible una tubería de 13 mm (1/2 pulg.). Consulte al fabricante de la bomba para el uso de mangueras largas o elevaciones para alturas superiores. Se recomienda una punta aspersora reversible. Se sugiere un patrón en abanico de 152 mm (6 pulg.) para evitar la sobreaspersión.

El siguiente equipo pulverizador sin aire ha demostrado su idoneidad para la aplicación de este producto. STI no garantiza la idoneidad ni el uso de este equipo y no tiene ninguna afiliación de ningún tipo con su fabricante.

Fabricante Número de modelo y descripción

Titan Tool Inc. Atomizador eléctrico sin aire 740ix

Graco Inc. Atomizador eléctrico sin aire Ultra Max II 695

Disponibilidad

El pulverizador elastomérico SpecSeal® AS200 está disponible con los distribuidores autorizados de Specified Technologies Inc. (STI). Para obtener información adicional de compra y técnica o para obtener los nombres y la ubicación

INFORMACIÓN DE PEDIDO					
Número de catálogo	Número UPC	Tamaño	(UOM) Cant.	Cant. por caja	Peso (Cada uno)
AS205	730573071076	Balde de 5 galones; 19 litros (1.155 pulg. cúbicas)	1	1	24,31 kg (53,60 lb)
AS205R	730573071083	Balde de 5 galones; 19 litros (1.155 pulg. cúbicas)	1	1	24,31 kg (53,60 lb)

SPECSEAL® LCI SELLADOR CORTAFUEGO LATEX EN INTERIORE PARA PASADAS JUNTAS Y

TUBERÍAS

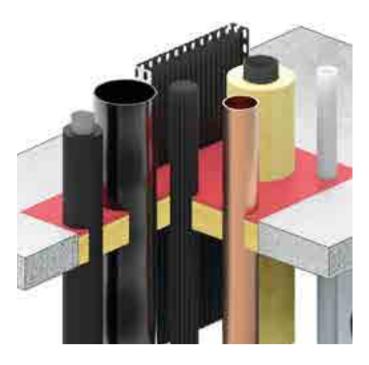
El sellador SpecSeal® LCI es un sellador intumescente versátil y económico que tiene excelentes propiedades de calafateo además de altas propiedades de construcción en superficies verticales o superiores. Este sellador de un solo componente se puede calafatear (cartucho estándar o carga a granel), aplicar con espátula o paleta.

Además, el sellador SpecSeal® LCI no contiene PCB ni asbesto. El sellador SpecSeal® LCI es estable frente al almacenamiento (cuando se almacena según las recomendaciones del fabricante) y no se separa ni encoge cuando se aplica (cuando se aplica según las recomendaciones del fabricante).

El sellador SpecSeal® LCI se adhiere a todos los materiales comunes de construcción y penetrantes, y no contiene solventes que puedan afectar negativamente las tuberías plásticas o las fundas de cables.

Aplicaciones

El sellador SpecSeal® LCI tiene una base de aplicación amplia diseñada para sellar una amplia variedad de penetraciones comunes y juntas de la construcción. Los tipos de elementos penetrantes incluyen: Elementos penetrantes metálicos (acero, fierro, tubos de cobre, tuberías de cobre, conductos del acero y EMT) de un tamaño comercial de hasta 914 mm (36 pulg.); elementos penetrantes no metálicos (conductos y tuberías, incluso PVC, CPVC, ABS y PEX); tuberías aisladas que incluyen aplicaciones de calefacción, enfriamiento y condensación; servicio eléctrico común y distribución de energía (entrada de servicio, bandejas de cables, canalizaciones eléctricas), cableado telefónico, de datos y TV; conductos estructurales de acero y metal que incluye ventilaciones de HVAC, baño y secadora. Este producto también se utiliza con otros productos SpecSeal® como los collarines cortafuego y las cintas envolventes SpecSeal® para proteger largas tuberías de plástico.


Especificaciones

El sellador cortafuego debe ser un sellador de látex intumescente resistente al agua. Cuando el sellador se expone a alto calor o llamas debe mostrar una expansión libre de hasta 10 veces su volumen original. El sellador cortafuego no debe contener ingredientes solubles ni higroscópicos y debe estar probado acústicamente. El sellador debe estar certificado por UL o aprobado por FM y probado para cumplir con los requisitos de las normas ASTM E814 (UL1479),

CAN/ULC-S115 y debe cumplir con los requisitos de las terminaciones clase A cuando se prueba de acuerdo con la norma ASTM E84 (UL723).

Divisiones especificadas

División 7 07 84 13 Cortafuego de penetración División 7 07 84 43 Cortafuego de juntas División 22 22 00 00 Tuberías División 23 23 00 00 HVAC División 26 26 00 00 Eléctric

Características y ventajas

- · Económico: alto rendimiento sin un precio elevado
- · Atamente intumescente: se expande hasta 10 veces
- Excelente sello para humo
- Resistente al agua: no se vuelve a emulsificar cuando está seco
- Basado en agua para facilitar la instalación, limpieza y eliminación
- Probado acústicamente: reduce la transmisión del ruido
- Seguro, poco VOC, sin asbesto, sin PCB, sin fibras inorgánicas
- Se puede pintar cuando está seco
- Adherencia automática
- · No halogenado
- Fórmula con alto contenido de sólidos, retracción mínima
- Cumple con los requisitos de LEED™ v3, v4 y v4.1.
 Crédito por materiales de baja emisión. Consulte la certificación LEED para ver los créditos adicionales que correspondan.

PROPIEDADES FÍSICAS

Color Densidad/Peso por galón Contenido de sólidos por peso Contenido de sólidos por volumen 70.8%

Propagación de llamas* 0 Desarrollo de humo* 0

Tasa de crecimiento de moho y hongos (ASTM G21) 0

Capacidades de movimiento

Cobertura

На

Temperatura en servicio

Temperatura de almacenamiento

Temperatura de aplicación

Clasificación STC (ASTM E90-04/ASTM C919)

Contenido VOC**

Comienzo de la expansión

Retracción promedio del volumen (ASTM C1241)

Volumen de expansión

Vida útil almacenado desde la fecha de fabricación

Roio

1,47 kg/l (12,3 lb/gal)

80.0%

Solo 33% de compresión, clase II

Para obtener más información sobre la cobertura del producto consulte los siguientes documentos para

Menor o igual a 85°C (185°F) 4°C (40°F) a 35°C (95°F)

2°C (35°F) a 38°C (100°F)

62 (Relacionado con la construcción específica)

26 a/l 177°C (350°F)

21.1%

Expansión libre 10 veces

24 meses

Desempeño

El sellador SpecSeal® LCI es la base para los sistemas que cumplen con los rigurosos criterios de las normas ASTM E814 (UL1479), ASTM E1966 (UL2079) y CAN/ULC-S115 además de los requisitos de tiempo-temperatura de la norma ASTM E119 (UL263). LCI proporciona una clasificación horaria contra incendios de hasta 4 horas para las penetraciones de servicio comunes a través de pisos de concreto o madera, muros de concreto o mampostería además de paredes con paneles de veso.

El sellador SpecSeal® LCI cumple con los requisitos de las

terminaciones clase A para la propagación de llamas y desarrollo de humo cuando se prueba de acuerdo con la norma ASTM E84 (UL723). Cumple o supera los requisitos de la norma ASTM C834, tipo C, grado O. Además el sellador SpecSeal® LCI se prueba acústicamente, demostrando excelentes propiedades de atenuación del sonido.

Limitaciones

Utilice el producto según las instrucciones del fabricante. Utilícelo solo en aplicaciones según los diseños publicados o las recomendaciones específicas del fabricante. Finalmente el usuario final debe determinar la idoneidad del producto o el diseño para sus necesidades específicas y asume la responsabilidad de su uso. EL PRODUCTO CONTIENE AGUA Y ES CONDUCTOR HASTA QUE ESTÉ SECO. NO APLIQUE EN PRESENCIA DE CONDUCTORES ELÉCTRICOS EXPUESTOS O CON ENERGÍA. Este producto fue diseñado para un uso seguro con plásticos. Este se ha utilizado ampliamente y con éxito junto con diversos tipos de tuberías, tubos y aislamientos de cable plásticos. Sin embargo, las variaciones en estos materiales impiden garantizar la compatibilidad. STI recomienda encarecidamente al usuario que consulte al fabricante de las tuberías, tubos o cables sobre cualquier sensibilidad conocida o posibles restricciones antes de aplicar este producto.

Mantenimiento

Normalmente no se requiere mantenimiento, sin embargo, se recomienda una inspección periódica de las barreras clasificadas para asegurarse de que se selló o reparó correctamente cualquier nueva apertura, modificaciones de los cortafuego instalados previamente o las áreas que muestran daños físicos. El sellado posterior o las reparaciones se deben realizar utilizando productos SpecSeal® según el diseño original aprobado.

RENOVACIÓN: Al agregar o guitar elementos penetrantes, debe tener cuidado para minimizar el daño al sello. Vuelva a sellar utilizando productos SpecSeal® según el diseño aprobado. NOTA: Los nuevos elementos penetrantes de una naturaleza distinta al diseño original pueden requerir un diseño totalmente nuevo de cortafuego o grandes modificaciones al diseño existente. Vuelva a sellar todas las aperturas según los requisitos del diseño modificado.

^{*}Probado de acuerdo con ASTM E84 (UL723) con un 14% de cobertura de la superficie (prueba modificada para selladores y masillas)

^{**} Según la regla 1168 de SCAQMD (Método 24 de la EPA)

Selección del sistema

Para encontrar un sistema cortafuego o crear una presentación, visite https://systems.stifirestop.com/ para usar la Búsqueda de sistemas y generador de presentaciones. También puede visitar el Directorio en línea de certificaciones UL/iQTM de productos de UL para ver listados completos. (Sistemas cortafuego).

Servicio técnico

Specified Technologies Inc. proporciona asistencia técnica de cobro revertido para ayudarlo en la selección de productos y el correcto diseño de instalación. Los diseños de sistemas UL adecuados para fines de presentación o especificaciones están disponibles a pedido. Se proporciona una biblioteca completa de información técnica en el sitio web de la empresa www. stifirestop.com que incluye Hojas de datos de seguridad (SDS).

Información preventiva

Consulte las hojas de datos de seguridad (SDS) para obtener información adicional sobre la manipulación y desecho seguros de este material.

Disponibilidad

El sellador SpecSeal® LCI está disponible con los distribuidores autorizados de Specified Technologies Inc. (STI). Para obtener información adicional de compra y técnica o para obtener los nombres y la ubicación del representante o distribuidor más cercano, de este u otros productos de Specified Technology, llame al 1-800-992-1180 o visite www. stifirestop.com.

INFORMACIÓN DE PEDIDO					
Número de catálogo	Número UPC	Tamaño	(UOM) Cant.	Cant. por caja	Peso (Cada uno)
LCI300	730573011706	Tubo de 10,1 oz; 300 ml (18,2 pulg. cúbicas)	1	12	0,48 kg (1,05 lb)
LCI305	730573011751	Balde de 5 galones; 19 litros (1.155 pulg. cúbicas)	1	1	27,84 kg (61,39 lb)
LCI320	730573011720	Tripa de 20 oz; 592 ml (36 pulg. cúbicas)	1	12	0,89 kg (1,96 lb)
LCI329	730573011799	Tubo de 29 oz; 858 ml (52,3 pulg. cúbicas)	1	12	1,33 kg (2,94 lb)

Compatible con el sistema FBC™ indica que este producto ha sido probado y monitoreado de forma continua para garantizar su compatibilidad química con los sistemas de tubos FlowGuard Gold®, BlazeMaster® y Corzan®, y los productos fabricados con la tecnología TempRite®. El logo Compatible con el sistema FBC, FBC™, FlowGuard Gold®, BlazeMaster®, Corzan® y TempRite® son marcas registradas de Lubrizol Advanced Materials, Inc. o sus filiales.

AVISO IMPORTANTE: TODAS LAS AFIRMACIONES, INFORMACIÓ NT ÉCNICA Y RECOMENDACIONES QUE CONTIENE ESTE DOCUMEN TO SE BASAN EN PRUEBAS QUE SE CONSIDERA N CONFIABLES. P ERO NO SE GARANTIZA LA EXACTITUD NI LA INTEGRIDAD DE ESTAS.

STI HABITU ALMENTE GARANTIZA SUS PRODUCTOS POR UN AÑO COMPLETO. PARA VER DETALLES COMPLETOS DE NUESTRA GARANTÍA ESTÁNDA R, VISITE WWW.STIFIREST OP.COM/

HECHO EN EE.UU. - © 2021 SPECIFIE DT ECHNOLOGIES INC.

SPECSEAL® SIL SELLADOR CORTAFUEGO SILICONA EN INTEMPERIE PARA PASADAS JUNTAS Y TUBERÍAS

El sellador cortafuego de silicona SpecSeal® SIL es un sellador de silicona de un componente y de curado neutro que muestra un desempeño superior en aplicaciones donde se necesita sellar aperturas en paredes y pisos para controlar la propagación del fuego, el humo, los gases tóxicos y el agua durante un incendio.

El sellador cortafuego de silicona SpecSeal® SIL reacciona con la humedad atmosférica para formar un sello duradero y de alta resistencia que se adhiere a la mayoría de los sustratos de construcción sin el uso de imprimantes. Los productos SpecSeal® no contienen asbesto ni PCB.

USOS BÁSICOS: El sellador cortafuego de silicona SpecSeal® SIL está diseñado para su uso en sistemas cortafuego para penetraciones pasantes y juntas. Este producto sobresale en aplicaciones donde se requiere una mayor resistencia al agua. Los sistemas se probaron para la clasificación Clase 1 W según la norma UL1479.

El sellador cortafuego de silicona SpecSeal® SIL está disponible en calidades no deformable (SIL300) y autonivelante (SIL300SL) y también se puede utilizar para sellar juntas verticales y horizontales entre metales, mampostería, concreto y otros materiales de construcción comunes.

El sellador cortafuego de silicona SpecSeal® SIL está disponible en calidades no deformable (SIL300) y autonivelante (SIL300SL) y también se puede utilizar para sellar juntas verticales y horizontales entre metales, mampostería, concreto y otros materiales de construcción comunes.

Aplicaciones

El sellador cortafuego de silicona SpecSeal® SIL se utiliza para sellar sistemas cortafuego de penetración pasante y sistemas de juntas. Se probaron sistemas representativos que involucran principalmente elementos penetrantes no combustibles, cables eléctricos, de datos o telefónicos, separaciones de la construcción, juntas de expansión, aplicaciones de seguridad para muro cortina y juntas en la parte superior del muro.

Especificaciones

El sellador cortafuego de silicona debe ser de un componente y de curado neutro que cumpla con los requisitos de la norma ASTM C920. El sellador cortafuego debe estar certificado por UL y probado según los requisitos de las normas ASTM E814 (UL1479), ASTM E1966 (UL2079) y CAN/ULC-S115. La clasificación Clase 1 W según la norma UL1479 debe estar disponible para una variedad de distintos sistemas cortafuego.

Divisiones especificadas

División 7 07 84 13 Cortafuego de penetración División 7 07 84 43 Cortafuego de juntas División 22 22 00 00 Tuberías División 23 23 00 00 HVAC División 26 26 00 00 Eléctrico

Desempeño

Los selladores cortafuego de silicona SpecSeal® SIL son la base para los sistemas que cumplen con los rigurosos criterios de las normas ASTM E814 (UL 1479), ASTM E1966 (UL 2079), ASTM E1399, además de los requisitos de tiempo-temperatura de la norma ASTM E119 (UL 263). Los sistemas cortafuego para sistemas cortafuego de juntas y penetraciones pasantes se han probado con clasificaciones de hasta 4 horas. Consulte Sistemas UL para obtener información más específica.

Además, el sellador cortafuego de silicona SpecSeal® SIL, cumple con la norma ASTM C920, "Especificación estándar para selladores elastoméricos de juntas". En el caso de SIL300 el producto se detalla como tipo S, grado NS, clase 50, uso A, G, M, O. En el caso de SIL300SL el producto se detalla como tipo S, grado P, clase 25, uso A, G, M, O.

Por último, SIL300 (no deformable) fue evaluado por NSF Laboratories para su inclusión en el programa Compatibles con el sistema FGG/BM/CZ CPVC de Lubrizol.

Características y ventajas

- El módulo bajo permite el movimiento dinámico en juntas
- No halogenado
- La adherencia automática permite que el sellador fresco se adhiera al sellador curado
- Excelente resistencia al agua para sellados herméticos; incluso clasificación clase 1 W (UL1479)
- Resistente al ozono y los rayos ultra violetas para una excelente resistencia a la intemperie y larga vida útil
- Excelente resistencia química que protege en atmósferas contaminadas o corrosivas
- Excelente adhesión a la mayoría de los sustratos de construcción
- Excelente sello para humo
- · Curado neutro
- Seguro, sin asbesto, sin PCB, sin fibras inorgánicas
- Cumple con los requisitos de LEED™ v3, v4 y v4.1.
 Crédito por materiales de baja emisión. Consulte la certificación LEED para ver los créditos adicionales que correspondan.

Limitaciones

Este producto fue diseñado para un uso seguro con plásticos. Este se ha utilizado ampliamente y con éxito junto con diversos tipos de tuberías, tubos y aislamientos de cable plásticos. Sin embargo, las variaciones en estos materiales impiden garantizar la compatibilidad. STI recomienda encarecidamente al usuario que consulte al fabricante de las tuberías, tubos o cables sobre cualquier sensibilidad conocida o posibles restricciones antes de aplicar este producto.

Mantenimiento

Inspección: Las instalaciones se deben inspeccionar periódicamente en busca de daños posteriores. Cualquier daño se debe reparar utilizando productos SpecSeal®según el diseño original aprobado. Corte el material dañado y vuelva a aplicar sellador según sea necesario. NOTA: Los nuevos elementos penetrantes de una naturaleza distinta al diseño original pueden requerir un diseño totalmente nuevo de cortafuego o grandes modificaciones al diseño existente. Vuelva a sellar todas las aperturas según los requisitos del diseño modificado.

Selección del sistema

Para encontrar un sistema cortafuego o crear una presentación, visite https://systems.stifirestop.com/ para usar la Búsqueda de sistemas y generador de presentaciones. También puede visitar el Directorio en línea de certificaciones UL/iQTM de productos de UL para ver listados completos. (Sistemas cortafuego).

PRO	PIEDADES FÍSICAS; COMO SE ENTRE	GAN
	SIL300 (no deformable)	SIL300SL (autonivelante)
Consistencia	Se puede aplicar con la llana	Se puede verter
Densidad/(Peso por galón)	11,6 lb/gal	11,5 lb/gal
Contenido de sólidos por peso	100%	85%
Cobertura	Para obtener más información sobre la cobertura del producto consulte los siguientes documentos para <u>Junta lineal</u> y <u>Penetración</u>	Para obtener más información sobre la cobertura del producto consulte los siguientes documentos para <u>Junta lineal</u> y <u>Penetración</u>
Viscosidad	1.200.000 cp	25.000 cp
Temperatura de almacenamiento	Menos de 27°C (80°F)	Menos de 27°C (80°F)
Temperatura de aplicación	-37°C (35°F) a 60°C (140°F)	-37°C (35°F) a 60°C (140°F)
Contenido VOC**	20 g/l	Menos de 47 g/l
Vida útil almacenado desde la fecha de fabricación	18 meses	18 meses
Tiempo de aplicación	25 a 30 minutos	25 a 30 minutos
Endurecimiento, ASTM C679 (77°F, 50% HR)	3 a 4 horas	50 a 60 minutos
Ondulación/Revenimiento, ASTM D2202	0,1" máx.	N.A.
Periodo garantizado de almacenamiento	12 meses desde la fecha de envío, si se almacena en el contenedor original sin abrir a 27°C (80°F)	12 meses desde la fecha de envío, si se almacena en el contenedor original sin abrir a 27°C (80°F)
	PROPIEDADES FÍSICAS; CURADO	
	SIL300 (no deformable)	SIL300SL (autonivelante)
Color	Concreto (caliza)	Gris
Propagación de llamas*	5	5
Humo desarrollado*	45	45
Tasa de crecimiento de moho y hongos (ASTM G21)	0	1
\· · - · · · · · · /		
Capacidades de movimiento	± 50% (ASTM C719) ± 35% (ASTM E1399)	± 50% (ASTM C719) ± 15% (ASTM E1399)
· · · · · · · · · · · · · · · · · · ·		
Capacidades de movimiento	± 35% (ASTM E1399)	± 15% (ASTM E1399)
Capacidades de movimiento Temperatura en servicio	± 35% (ASTM E1399) -37°C (-35°F) a 177°C (350°F)	± 15% (ASTM E1399) -37°C (-35°F) a 149°C (300°F)
Capacidades de movimiento Temperatura en servicio Dureza Shore A (ASTM D2240) Clasificación STC (Relacionado con la construcción específica),	± 35% (ÀSTM E1399) -37°C (-35°F) a 177°C (350°F) 24	± 15% (ASTM E1399) -37°C (-35°F) a 149°C (300°F) 26
Capacidades de movimiento Temperatura en servicio Dureza Shore A (ASTM D2240) Clasificación STC (Relacionado con la construcción específica), (ASTM E 90-04/ASTM C919)	± 35% (ASTM E1399) -37°C (-35°F) a 177°C (350°F) 24 61	± 15% (ÅSTM E1399) -37°C (-35°F) a 149°C (300°F) 26 61
Capacidades de movimiento Temperatura en servicio Dureza Shore A (ASTM D2240) Clasificación STC (Relacionado con la construcción específica), (ASTM E 90-04/ASTM C919) Resistencia a la intemperie y U.V.	± 35% (ÀSTM E1399) -37°C (-35°F) a 177°C (350°F) 24 61 Excelente	± 15% (ASTM E1399) -37°C (-35°F) a 149°C (300°F) 26 61 Excelente
Capacidades de movimiento Temperatura en servicio Dureza Shore A (ASTM D2240) Clasificación STC (Relacionado con la construcción específica), (ASTM E 90-04/ASTM C919) Resistencia a la intemperie y U.V. Resistencia a la tracción, psi (ASTM D412)	± 35% (ASTM E1399) -37°C (-35°F) a 177°C (350°F) 24 61 Excelente 341 psi (2,35 MPa)	± 15% (ASTM E1399) -37°C (-35°F) a 149°C (300°F) 26 61 Excelente 110 psi (0,76 MPa)

Servicio técnico

Specified Technologies Inc. proporciona asistencia técnica de cobro revertido para ayudarlo en la selección de productos y el correcto diseño de instalación. Los diseños de sistemas UL adecuados para fines de presentación o especificaciones están disponibles a pedido. Se proporciona una biblioteca completa de información técnica en el sitio web de la empresa www. stifirestop.com que incluye Hojas de datos de seguridad (SDS).

Información preventiva

Evite el contacto con los ojos. El contacto con el producto sin curar puede irritar los ojos. Utilice solo en áreas bien ventiladas. Para limpiar las áreas de contacto con la piel, limpie el material sin curar con un trapo seco o una toalla de papel antes de lavarse. Los limpiadores de manos sin agua son especialmente eficaces mientras el sellador no está curado. Consulte las hojas de datos de seguridad (SDS) para obtener información adicional sobre la manipulación y desecho seguros de este material.

Disponibilidad

El sellador cortafuego de silicona SpecSeal® SIL está disponible con los distribuidores autorizados de Specified Technologies Inc. (STI).

INFORMACIÓN DE PEDIDO					
Número de catálogo	Número UPC	Tamaño	(UOM) Cant.	Cant. por caja	Peso (Cada uno)
SIL300	730573013106	Tubo de 10,1 oz; 300 ml (18,2 pulg. cúbicas)	1	24	0,47 kg (1,03 lb)
SIL305	730573013052	Balde de 4,5 galones; 17,0 litros (1,037 pulg. cúbicas)	1	1	24,69 kg (54,43 lb)
SIL320	730573013205	Tripa de 20 oz; 592 ml (36 pulg. cúbicas)	1	12	0,84 kg (1,86 lb)
SIL305SL	730573013267	Balde de 4,5 galones; 17,0 litros (1.037 pulg. cúbicas)	1	1	23,54 kg (51,89 lb)
SIL320SL	730573013229	Tripa de 20 oz; 592 ml (36 pulg. cúbicas)	1	12	0,84 kg (1,86 lb)

Compatible con el sistema FBC™ indica que este producto ha sido probado y monitoreado de forma continua para garantizar su compatibilidad química con los sistemas de tubos FlowGuard Gold®, BlazeMaster® y Corzan®, y los productos fabricados con la tecnología TempRite®. El logo Compatible con el sistema FBC, FBC™, FlowGuard Gold®, BlazeMaster®, Corzan® y TempRite® son marcas registradas de Lubrizol Advanced Materials, Inc. o sus filiales.

AVISO IMPORTANTE: T ODAS LAS AFIRMACIONE S, INFORMACIÓ NT ÉCNICA Y RECOMENDACIONE S QUE CONTIENE ESTE DOCUMEN TO SE BASAN EN PRUEBAS QUE SE CONSIDERAN CONFIABLES, PERO NO SE GARANTIZ A LA EXACTITUD NI LA INTEGRIDA D DE ESTAS.

STI HABITU ALMENTE GARANTÍA ESTÁNDAR, V ISITE WWW.STIFIREST OP.COM/LEGAL/WARRANT Y

HECHO EN EE.UU. - © 2021 SPECIFIE DT ECHNOL OGIES INC.

SPECSEAL® SIL SELLADOR CORTAFUEGO SILICONA EN INTEMPERIE PARA PASADAS JUNTAS Y TUBERÍAS

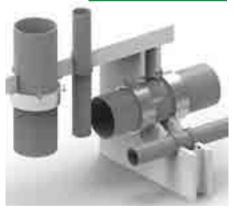
Las cintas envolventes SpecSeal® son cintas elastoméricas muy flexibles diseñadas como cortafuego en penetraciones combustibles de pisos, pisos y techos, y paredes resistentes a incendios. Cómodos rollos de 3,7 m (12 pies) o cintas dimensionadas individualmente para facilitar la instalación y minimizar los desechos.

Estos productos utilizan la tecnología intumescente de respuesta rápida de STI, proporcionando una expansión muy sensible y altamente dirigida. La expansión rápida proporciona un cierre rápido para los elementos penetrantes combustibles que se queman.

Cuando se expone a temperaturas que superan los 121°C (250°F), la cinta envolvente SpecSeal® comienza a expandirse (hinchar) rápidamente para formar un residuo carbonoso denso y altamente aislante. La expansión libre varía según el grado utilizado (consulte la Tabla A). La expansión continúa hasta a temperaturas de 538°C (1.000°F).

Aplicaciones

Las cintas envolventes SpecSeal® se utilizan como cortafuego de elementos penetrantes combustibles como tuberías no metálicas o aislamiento de tuberías. Las instalaciones se desarrollaron para aplicaciones de "inserción" (donde las cintas se aseguran alrededor del elemento penetrante y se deslizan dentro de la apertura) y conjuntos de collarines de sujeción (para montaje


superficial). Para aperturas más grandes o configuraciones complejas de los elementos penetrantes, se desarrollaron sistema que utilizan las cintas envolventes junto con otros productos de SpecSeal®. Las cintas envolventes SpecSeal® son adecuadas para usarlas en todas las formas comunes de construcción incluso piese de construcción inclusor piese de construcción piese piese

construcción, incluso pisos de concreto, concreto sobre cubiertas de acero, muros de concreto, muros de bloques de concreto, paneles de yeso/paneles de entramado y conjuntos de piso/techo de madera.

Especificaciones

El material de la cinta envolvente debe ser de un material intumescente altamente flexible. La cinta envolvente no debe contener ingredientes expansivos solubles en agua y debe proporcionar un mínimo de expansión libre de 30 veces. La cinta envolvente intumescente se debe revestir a cada lado con plástico. El material especificado debe estar aprobado para una amplia gama de aplicaciones, incluso elementos penetrantes combustibles y no combustibles cuando se utiliza en forma individual o en combinación con otros productos del mismo fabricante.

Características y ventajas

- Expansión rápida; cierra más rápido los elementos penetrantes que se queman
- Residuo carbonoso de alto volumen; expansión considerable que sella la apertura
- Resistente al agua; sin ingredientes solubles ni higroscópicos
- Económico; rollos de 3,7 m (12 pies)
 o cintas cortadas previamente que
 se traducen en la falta de retazos,
 menos desperdicio
- Atamente flexible; sin lámina, más fácil de instalar
- Versátil, se adapta a un amplio rango de aplicaciones complejas

La cinta envolvente debe estar certificada por UL y probada según los requisitos de las normas ASTM E814 (UL1479) y CAN/ULC-S115.

Divisiones especificadas

División 7 07 84 13 Cortafuego de penetración División 22 22 00 00 Cortafuego para tuberías

Desempeño

Las cintas envolventes SpecSeal® son la base para los sistemas que cumplen con los rigurosos criterios de las normas ASTM E814 (UL1479) y CAN/ULC-S115. Los sistemas se probaron para todas las formas comunes de construcción y elementos penetrantes con clasificaciones

nominales de hasta 4 horas (dependiendo del grado de la cinta envolvente que se utilizó).

Limitaciones

Este producto fue diseñado para un uso seguro con plásticos. Este se ha utilizado ampliamente y con éxito junto con diversos tipos de tuberías, tubos y aislamientos de cable plásticos. Sin embargo, las variaciones en estos materiales impiden garantizar la compatibilidad. STI recomienda encarecidamente al usuario que consulte al fabricante de las tuberías, tubos o cables sobre cualquier sensibilidad conocida o posibles restricciones antes de aplicar este producto.

Mantenimiento

Inspección: Las instalaciones se deben inspeccionar periódicamente en busca de daños posteriores. Cualquier daño se debe reparar utilizando productos SpecSeal® según el diseño original aprobado.

Selección del sistema

Para encontrar un sistema cortafuego o crear una presentación, visite https://systems.stifirestop.com/ para usar la Búsqueda de sistemas y generador de presentaciones. También puede visitar el Directorio en línea de certificaciones UL/iQTM de productos de UL para ver listados completos. (Sistemas cortafuego).

Servicio técnico

Specified Technologies Inc. proporciona asistencia técnica de cobro revertido para ayudarlo en la selección de productos y el correcto diseño de instalación. Los diseños de sistemas UL adecuados para fines de presentación o especificaciones están disponibles a pedido. Se proporciona una biblioteca completa de información técnica en el sitio web de la empresa www. stifirestop.com que incluye Hojas de datos de seguridad (SDS).

Información preventiva

Consulte las hojas de datos de seguridad (SDS) para obtener información adicional sobre la manipulación y desecho seguros de este material. Lave las áreas de contacto con la piel con agua y jabón. Evite el contacto con los ojos.

TABLA A: PROPIEDADES FÍSICAS						
N/					00144560	001410500
Número de catálogo	SSW125	SSW250	SSW375	SSW375-12	SSW1569	SSW2538
Color	Gris	Gris	Gris	Gris	Gris	Gris
Grosor	3,2 mm (1/8")	6,4 mm (1/4")	9,5 mm (3/8")	9,5 mm (3/8")	18 mm (11/16")	9,5 mm (3/8")
Ancho	38 mm (1-1/2")					
Longitud (mín.)	205 mm (8-1/16")	306 mm (12-1/16")	405 mm (15-15/16")	3,7 m (12 pies)	3,7 m (12 pies)	3,7 m (12 pies)
Peso (mín.)	0,03 kg (0,07 lb)	0,10 kg (0,21 lb)	0,18 kg (0,40 lb)	1,68 kg (3,71 lb)	2,86 kg (6,31 lb)	3,14 kg (6,93 lb)
Sistema de expansión	Una etapa					
Comienzo de la expansión	160°C (320°F)	160°C (320°F)	160°C (320°F)	160°C (320°F)	160°C (320°F)	160°C (320°F)
Volumen de expansión	30 a 60 veces					
Tasa de crecimiento de moho y hongos (ASTM G21)	0	0	0	0	0	0
Temperatura en servicio	Menos de 54°C (130°F)					

TABLA A: PROPIEDADE S FÍSICAS										
Temperatura de almacenamiento	Menos de									
	54°C (130°F)									
Vida útil	Sin límite									
Envejecimiento en horno	Sin cambio									
	60°C (140°F)									
Exposición a la humedad	Sin cambio									
	60°C (98% H.R.)									
Envejecimiento acelerado UL	Aprobado	Aprobado	Aprobado	Aprobado	Aprobado	Aprobado				

REQUISIT OS DE LA CINTA ENVOLVENTE Y EL COLLARÍ N DE SUJECIÓ N										
Tipo de cinta envolvente	Tamaño comercial (pulg.)	DE de la tubería (pulg.)	1a. capa (pulg.)	2a. capa (pulg.)	Longitud total de la cinta envolvente por pila (pulg.)	Longitud del collarín de retención (pulg.)				
SSW1569	66	,625	25,1-		25,11	27,1 ¹				
	66	,625	23,2	25,5	48,7	27,5				
00W07E 10 00W0E00	88	,625	29,5	31,8	61,3 ²	33,8 ²				
SSW375-12, SSW2538	10	10,75	36,1	38,5	74,6³	40,5³				
	12	12,75	42,4	44,8	87,2³	46,8 ³				

¹Requiere 1 pila de 1 capa de cinta envolvente y un collarín de sujeción SSWRC2 (1-1/2" de profundidad).

Disponibilidad

Las cintas envolventes SpecSeal® están disponibles con los distribuidores autorizados de Specified Technologies Inc. (STI). Para obtener información adicional de compra y técnica o para obtener los nombres y la ubicación del representante o distribuidor más cercano, de este u otros productos de Specified Technology, llame al 1-800-992-1180 o visite www.stifirestop.com.

INFORMACIÓN DE PEDIDO										
Número de catálogo	Número UPC	Tamaño	(UOM) Cant.	Cant. por caja	Peso (Cada uno)					
SSW1569	730573037980	Rollo de 3,7 m x 38 mm x 17,5 mm (12' x 1-1/2" x 11/16")	1	6	2,86 kg (6,31 lb)					
SSW2538	730573037973	Rollo de 3,7 m x 64 mm x 9,5 mm (12' x 2-1/2" x 3/8")	1	6	3,14 kg (6,93 lb)					
SSW375-12	730573037966	Rollo de 3,7 m x 38 mm x 9,5 mm (12' x 1-1/2" x 3/8")	1	12	1,68 kg (3,71 lb)					
SSWRC2	730573037522	Collarín de sujeción de lámina metálica galvanizada calibre 30 de 1-1/2" de ancho para tuberías de tamaño comercial ≤ 152 mm (6"), rollo de 7,6 m (25')	, 1	1	2,35 kg (5,19 lb)					
SSWRC3	730573037553	Collarín de sujeción de lámina metálica galvanizada calibre 30 de 2-1/2" de ancho para tuberías de tamaño comercial ≤ 204 mm (8"), rollo de 7,6 m (25')	, 1	1	2,90 kg (6,40 lb)					
INFO	RMACIÓN DI	E PEDIDO DE LAS CINTAS ENVOLVENTES COF	RTADAS P	REVIAMEN	ITE					
SSW125	730573031254	Cinta de 38 mm (1-1/2") x 3,2 mm (1/8") dimensionada para tuberías de tamaño comercial de 51 mm (2")	1	540	0,03 kg (0,07 lb)					
SSW250	730573032503	Cinta de 38 mm (1-1/2") x 6,4 mm (1/4") dimensionada para tuberías de tamaño comercial de 76 mm (3")	1	160	0,10 kg (0,21 lb)					
SSW375	730573033753	Cinta de 38 mm (1-1/2") x 9,5 mm (3/8") dimensionada para tuberías de tamaño comercial de 102 mm (4")	1	150	0,18 kg (0,40 lb)					

AVISO IMPORTANTE: TODAS LAS AFIRMACIONES, INFORMACIÓN TÉCNICA Y RECOMENDACIONES QUE CONTIENE ESTE DOCUMENTO SE BASAN EN PRUEBAS QUE SE CONSIDERAN CONFIABLES, PERO NO SE GARANTIZA LA EXACTITUD NI LA INTEGRIDAD DE ESTAS.

STI HABITUALMENTE GARANTIZA SUS PRODUCTOS POR UN AÑO COMPLETO. PARA VER DETALLES COMPLETOS DE NUESTRA GARANTÍA ESTÁNDAR, VISITE WWW.STIFIRESTOP.COM/LEGAL/WARRANTY

²Requiere 1 pila de 2 capas de cinta envolvente y un collarín de sujeción SSWRC3 (2-1/2" de profundidad).

³Requiere 2 pilas de 2 capas de cinta envolvente y un collarín de sujeción WSC12 (5" de profundidad).

CINTA ENVOLVENTE INTUMESCENTE SPECSEAL® SSW BLU/BLU2

Las cintas envolventes SpecSeal® son cintas elastoméricas muy flexibles diseñadas como cortafuego en penetraciones combustibles de pisos, pisos y techos, y paredes resistentes a incendios. Cómodos rollos de 3,7 m (12 pies) o cintas dimensionadas individualmente para facilitar la instalación y minimizar los desechos.

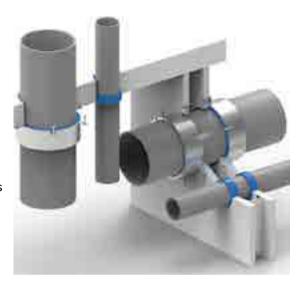
Estos productos utilizan la tecnología intumescente de respuesta rápida de STI, proporcionando una expansión muy sensible y altamente dirigida. La expansión rápida proporciona un cierre rápido para los elementos penetrantes combustibles que se queman.

Cuando se expone a temperaturas que superan los 121°C (250°F), la cinta envolvente SpecSeal® comienza a expandirse (hinchar) rápidamente para formar un residuo carbonoso denso y altamente aislante. La expansión libre varía según el grado utilizado (consulte la Tabla A). La expansión continúa hasta a temperaturas de 538°C (1.000°F).

Aplicaciones

Las cintas envolventes SpecSeal® se utilizan como cortafuego de elementos penetrantes combustibles como tuberías no metálicas o aislamiento de tuberías. Las instalaciones se desarrollaron para aplicaciones de "inserción" (donde las cintas se aseguran alrededor del elemento penetrante y se deslizan dentro de la apertura) y conjuntos de collarines de sujeción (para montaje superficial). Para aperturas más

grandes o configuraciones complejas de los elementos penetrantes, se desarrollaron sistema que utilizan las cintas envolventes junto con otros productos de SpecSeal®. Las cintas envolventes SpecSeal® son adecuadas para usarlas en todas las formas comunes de construcción, incluso pisos de concreto, concreto sobre cubiertas de acero, muros de concreto, muros de bloques de concreto, paneles de yeso/paneles de entramado y conjuntos de piso/techo de madera.


Especificaciones

El material de la cinta envolvente debe ser de un material intumescente altamente flexible. La cinta envolvente no debe contener ingredientes expansivos solubles en agua y debe proporcionar un mínimo de expansión libre de 20 veces. La cinta envolvente intumescente se debe revestir a cada lado con plástico. El material especificado debe estar aprobado para una amplia gama de aplicaciones, incluso elementos penetrantes combustibles y no combustibles cuando se utiliza en forma individual o en combinación con otros productos del mismo fabricante. La cinta envolvente debe estar certificada por UL y probada según los requisitos de las normas ASTM E814 (UL 1479), CAN/ULC-S115.

Divisiones especificadas

División 7 07 84 13 Cortafuego de penetración División 22 22 00 00 Tuberías

Características y ventajas

- Expansión rápida; cierra más rápido los elementos penetrantes que se queman
- Residuo carbonoso de alto volumen; expansión considerable que sella la apertura
- Resistente al agua; sin ingredientes solubles ni higroscópicos
- Económico; rollos de 3,7 m (12 pies) o cintas cortadas previamente que se traducen en la falta de retazos, menos desperdicio
- Altamente flexible; sin lámina, más fácil de instalar
- Versátil, se adapta a un amplio rango de aplicaciones complejas

Limitaciones

Este producto fue diseñado para un uso seguro con plásticos. Este se ha utilizado ampliamente y con éxito junto con diversos tipos de tuberías, tubos y aislamientos de cable plásticos. Sin embargo, las variaciones en estos materiales impiden garantizar la compatibilidad. STI recomienda encarecidamente al usuario que consulte al fabricante de las tuberías, tubos o cables sobre cualquier sensibilidad conocida o posibles restricciones antes de aplicar este producto.

Desempeño

Las cintas envolventes SpecSeal® son la base para los sistemas que cumplen con los rigurosos criterios de las normas ASTM E814 (UL 1479), CAN/ULC-S115. Los sistemas se probaron para todas las formas comunes de construcción y elementos penetrantes con clasificaciones nominales de hasta 4 horas (dependiendo del grado de la cinta envolvente que se utilizó).

Mantenimiento

Inspección: Las instalaciones se deben inspeccionar periódicamente en busca de daños posteriores. Cualquier daño se debe reparar utilizando productos SpecSeal® según el diseño original aprobado.

Selección del sistema

Para encontrar un sistema cortafuego o crear una presentación, visite https://systems.stifirestop.com/ para usar la Búsqueda de sistemas y generador de presentaciones. También puede visitar el Directorio en línea de certificaciones UL/iQTM de productos de UL para ver listados completos. (Sistemas cortafuego).

Servicio técnico

Specified Technologies Inc. proporciona asistencia técnica de cobro revertido para ayudarlo en la selección de productos y el correcto diseño de instalación. Los diseños de sistemas UL adecuados para fines de presentación o especificaciones están disponibles a pedido. Se proporciona una biblioteca completa de información técnica en el sitio web de la empresa www. stifirestop.com que incluye Hojas de datos de seguridad (SDS).

Información preventiva

Consulte las hojas de datos de seguridad (SDS) para obtener información adicional sobre la manipulación y desecho seguros de este material. Lave las áreas de contacto con la piel con agua y jabón. Evite el contacto con los ojos.

TABLA A: PROPIEDADES FÍSICAS											
Número de catálogo	SSWBLU	SSWBLU2	SSWBLU220	SSWBLU230	SSWBLU240						
Color	Azul	Azul	Azul	Azul	Azul						
Grosor	4,8 mm (3/16")	3,2 mm (1/8")	3,2 mm (1/8")	3,2 mm (1/8")	3,2 mm (1/8")						
Ancho	51 mm (2")	51 mm (2")	38 mm (1-1/2")	76 mm (3")	102 mm (4")						
Longitud (mín.)	3,7 m (12 pies)	3,7 m (12 pies)	203 mm (8")	286 mm (11-1/4")	375 mm (14-3/4")						
Peso (mín.)	1,30 kg (2,87 lb)	0,77 kg (1,71 lb)	0,04 kg (0,08 lb)	0,10 kg (0,22 lb)	0,17 kg (0,37 lb)						
Sistema de expansión	Dos etapas	Una etapa	Una etapa	Una etapa	Una etapa						
Comienzo de la expansión	1a. etapa 121°C (250°F) 2a. etapa 177°C (350°F)	160°C (320°F)	160°C (320°F)	160°C (320°F)	160°C (320°F)						
Volumen de expansión	20 a 30 veces	30 a 60 veces	30 a 60 veces	30 a 60 veces	30 a 60 veces						

TABLA A: PROPIEDADE S FÍSICA S										
Tasa de crecimiento de moho y hongos (ASTM G21)	0	0000								
Temperatura en servicio	Menos de 54°C									
	(130°F)	(130°F)	(130°F)	(130°F)	(130°F)					
Temperatura de almacenamiento	Menos de 54°C									
	(130°F)	(130°F)	(130°F)	(130°F)	(130°F)					
Vida útil	Sin límite									
Envejecimiento en horno	Sin cambio									
	60°C (140°F)									
Exposición a la humedad	Sin cambio									
	60°C (98% H. R.)									
Envejecimiento acelerado UL	Aprobado	Aprobado	Aprobado	Aprobado	Aprobado					

	REQUISI TOS DE LA CINTA ENVOLVENTE Y EL COLLARÍN DE SUJECIÓN																				
Tipo de d envolve		BLU2	BLU	BLU2	BLU	BLU2	BLU	BLU2	BLU	BLU2	BLU	BLU2	BLU	BLU2	BLU	BLU2	BLU	BLU2	BLU	BLU2	BLU
Tamaño comercial (pulg.)	DE de la tubería (pulg.)	1a. d	capa2	a. (capa	За. (capa4	a. (capa	5a. d	capa	ба. с	capa	7a. (capa	8a. d	capa	Тс	tal	Colla suje	rín de ción
1,5	1,9	6,87	,1															6,87	,1	7,98	,3
2,0	2,3758	,3	8,7															8,38	,7	9,59	,9
2,5	2,875	9,9	10,3	10,7	11,5													20,6	21,8	11,9	12,8
3,03	,5	11,8	12,2	12,6	13,4													24,3	25,5	13,91	4,7
3,54	,0	13,4	13,7	14,1	14,9	14,9	16,1											42,4	44,8	16,3	17,5
4,0	4,5	14,9	15,3	15,7	16,5	16,5	17,7											47,14	9,5	17,9	19,1
6,0	6,625	21,6	22,0	22,4	23,2	23,2	24,3											134,3 ¹	139,0¹	24,71	26,0 ¹
8,0	8,6252	7,92	8,3	28,7	29,5	29,5	30,6	30,2	31,8									232,5 ²	240,3 ²	31,1 ²	32,8 ²
10,0	10,753	4,6	35,0	35,3	36,1	36,1	37,3	36,9	38,5									357,4 ³	367,2 ³	38,0 ³	39,6 ³
12,0	12,754	0,84	1,2	41,6	42,4	42,4	43,64	3,24	4,8	44,0	45,9-						-	530,14	544,9 ⁴	45,3 ⁴	47,3 ⁴
14,0	14,0	44,8	45,2	45,6	46,34	6,34	7,5	47,14	8,7	47,9	49,9	48,7	51,14	9,5	52,2	50,0	53,4	950,55	985,85	52,0 ⁵	55,4 ⁵

¹ Requiere 2 pilas de 3 capas de cinta envolvente y un collarín de sujeción WSC8 (4" de profundidad).

Disponibilidad

Las cintas envolventes SpecSeal® están disponibles con los distribuidores autorizados de Specified Technologies Inc. (STI). Para obtener información adicional de compra y técnica o para obtener los nombres y la ubicación del representante o distribuidor más cercano, de este u otros productos de Specified Technology, llame al 1-800-992-1180 o visite www.stifirestop.com

INFORMACIÓN DE PEDIDO										
Número de catálogo	Número UPC	Tamaño	(UOM) Cant.	Cant. por caja	Peso (Cada uno)					
SSWBLU	730573037010	Rollo de 3,7 m (12') x 51 mm (2") x 4,8 mm (3/16")	1	8	1,30 kg (2,87 lb)					
SSWBLU2	730573037119	Rollo de 3,7 m (12') x 51 mm (2") x 3,2 mm (1/8")	1	8	0,77 kg (1,71 lb)					
SSWRC	730573037508	Collarín de sujeción de lámina metálica galvanizada calibre 30 de 50,8 mm (2") de ancho para tuberías de tamaño comercial ≤ 102 mm (4"), rollo de 7,6 m (25')	1	1	2,93 kg (6,47 lb)					
WSC-8	730573037539	Collarín de sujeción formado previamente de 101,6 mm (4") de ancho para tuberías de tamaño comercial de 152 mm (6") y 204 mm (8")	1	1	0,68 kg (1,51 lb)					
WSC-12	730573037607	Collarín de sujeción formado previamente de 127 mm (5") de ancho para tuberías de tamaño comercial de 204 mm (8") y más	1	1	1,43 kg (3,15 lb)					
	CI	NTAS ENVOLVENTES CORTADAS PREVIAM	ENTE							
SSWBLU220	730573037201	Cinta cortada previamente dimensionada para tuberías de tamaño comercial de 51 mm (2")	1	100	0,04 kg (0,08 lb)					
SSWBLU230	730573037300	Cinta cortada previamente dimensionada para tuberías de tamaño comercial de 76 mm (3")	1	100	0,10 kg (0,22 lb)					
SSWBLU240	730573037409	Cinta cortada previamente dimensionada para tuberías de tamaño comercial de 102 mm (4")	1	100	0,17 kg (0,37 lb)					

AVISO IMPORTANTE: TODAS LAS AFIRMACIONES, I NFORMACIÓ NT ÉCNICA Y RECOMENDACIONES QUE CONTIEN E ESTE DOCUMEN TO SE BASAN EN PRUEBAS QUE SE CONSIDERA N CONFIABLES, P ERO NO SE GARANTIZ A LA EXACTITUD NI LA INTEGRIDAD DE ESTAS.

STI HABIT UALMENTE GARANTIZA SUS PRODUCTOS POR UN AÑO COMPLET O. PARA VER DETALLES COMPLETOS DE NUESTRA GARANTÍ A ESTÁNDAR, VISITE WWW.STIFIREST OP.COM/LEGAL/WARRANT Y

HECHO EN EE.UU. - © 2021 SPECIFIE DT ECHNOL OGIES INC.

² Requiere 2 pilas de 4 capas de cinta envolvente y un collarín de sujeción WSC8 (4" de profundidad).

³ Requiere 2 -1/ 2 pilas de 4 capas de cinta envolvente y un collarín de sujeción WSC12 (5" de profundidad).

⁴ Requiere 2 -1/ 2 pilas de 4 capas de cinta envolvente y un collarín de sujeción WSC12 (5" de profundidad).

⁵ Requiere 2 -1/2 pilas de 8 capas de cinta envolvente y un collarín de sujeción WSC12 (5" de profundidad).

CINTA ENVOLVENTE INTUMESCENTE SPECSEAL® SSW BLU/BLU2

Las cintas envolventes SpecSeal® son cintas elastoméricas muy flexibles diseñadas como cortafuego en penetraciones combustibles de pisos, pisos y techos, y paredes resistentes a incendios. Cómodos rollos de 3,7 m (12 pies) o cintas dimensionadas individualmente para facilitar la instalación y minimizar los desechos. Estos productos utilizan la tecnología intumescente de respuesta rápida de STI, proporcionando una expansión muy sensible y altamente dirigida. La expansión rápida proporciona un cierre rápido para los elementos penetrantes combustibles que se queman. Cuando se expone a temperaturas que superan los 121°C (250°F), la cinta envolvente SpecSeal® comienza a expandirse (hinchar) rápidamente para formar un residuo carbonoso denso y altamente aislante. La expansión libre varía según el grado utilizado (consulte la Tabla A). La expansión continúa hasta a temperaturas de 538°C (1.000°F)

Las cintas envolventes SpecSeal® se utilizan como cortafuego de elementos penetrantes combustibles como tuberías no metálicas o aislamiento de tuberías. Las instalaciones se desarrollaron para aplicaciones de "inserción" (donde las cintas se aseguran alrededor del elemento penetrante y se deslizan dentro de la apertura) y conjuntos de collarines de sujeción (para montaje superficial). Para aperturas más grandes o configuraciones complejas de los elementos penetrantes, se desarrollaron sistema que utilizan las cintas envolventes junto con otros productos de SpecSeal®. Las cintas envolventes SpecSeal® son adecuadas para usarlas en todas las formas comunes de construcción, incluso pisos de concreto, concreto sobre cubiertas de acero, muros de concreto, muros de bloques de concreto, paneles de yeso/paneles de entramado y conjuntos de piso/techo de madera.

Especificaciones

El material de la cinta envolvente debe ser de un material intumescente altamente flexible. La cinta envolvente no debe contener ingredientes expansivos solubles en agua y debe proporcionar un mínimo de expansión libre de 16 veces. La cinta envolvente intumescente se debe revestir a cada lado con plástico. El material especificado debe estar aprobado para una amplia gama de aplicaciones, incluso elementos penetrantes combustibles y no combustibles cuando se utiliza en forma individual o en combinación con otros productos del mismo fabricante. La

individual o en combinación con otros productos del mismo fabricante. La cinta envolvente debe estar certificada por UL y probada según los requisitos de las normas ASTM E814 (UL 1479), CAN/ULC-S115.

Divisiones especificadas

División 7 07 84 13 Cortafuego de penetración División 22 22 00 00 Tuberías

SpecSeal' SSW

Características y ventajas

- Expansión rápida; cierra más rápido los elementos penetrantes que se queman
- Residuo carbonoso de alto volumen;
 expansión considerable que sella la apertura
- Resistente al agua; sin ingredientes solubles ni higroscópicos
- Económico; rollos de 3,7 m (12 pies) o cintas cortadas previamente que se traducen en la falta de retazos, menos desperdicio
- Atamente flexible; sin lámina, más fácil de instalar
- Versátil, se adapta a un amplio rango de aplicaciones complejas

Desempeño

Las cintas envolventes SpecSeal® son la base para los sistemas que cumplen con los rigurosos criterios de las normas ASTM E814 (UL 1479), CAN/ULC-S115. Los sistemas se probaron para todas las formas comunes de construcción y elementos penetrantes con clasificaciones nominales de hasta 4 horas (dependiendo del grado de la cinta envolvente que se utilizó).

Limitaciones

Este producto fue diseñado para un uso seguro con plásticos. Este se ha utilizado ampliamente y con éxito junto con diversos tipos de tuberías, tubos y aislamientos de cable plásticos. Sin embargo, las variaciones en estos materiales impiden garantizar la compatibilidad. STI recomienda encarecidamente al usuario que consulte al fabricante de las tuberías, tubos o cables sobre cualquier sensibilidad conocida o posibles restricciones antes de aplicar este producto.

Mantenimiento

Inspección: Las instalaciones se deben inspeccionar periódicamente en busca de daños posteriores. Cualquier daño se debe reparar utilizando productos SpecSeal® según el diseño original aprobado.

Selección del sistema

Para encontrar un sistema cortafuego o crear una presentación, visite https://systems.stifirestop.com/ para usar la Búsqueda de sistemas y generador de presentaciones. También puede visitar el Directorio en línea de certificaciones UL/iQTM de productos de UL para ver listados completos. (Sistemas cortafuego).

Servicio técnico

Specified Technologies Inc. proporciona asistencia técnica de cobro revertido para ayudarlo en la selección de productos y el correcto diseño deinstalación. Los diseños de sistemas UL adecuados para fines de presentación o especificaciones están disponibles a pedido. Se proporciona una biblioteca completa de información técnica en el sitio web de la empresa www. stifirestop.com que incluye Hojas de datos de seguridad (SDS).

	TABLA A: PROPIEDADES FÍSICAS	
Número de catálogo	SSWRED	SSWRED2
Color	Rojo	Rojo
Grosor	6,4 mm (1/4")	3,2 mm (1/8")
Ancho	38 mm (1-1/2")	38 mm (1-1/2")
Longitud (mín.)	12 pies (3,7 m)	12 pies (3,7 m)
Peso (mín.)	1,33 kg (2,92 lb)	0,60 kg (1,33 lb)
Sistema de expansión	Dos etapas	Una etapa
Comienzo de la expansión	1a. etapa 121°C (250°F) 2a. etapa 177°C (350°F)	160°C (320°F)
Volumen de expansión	16 a 24 veces	24 a 48 veces
Tasa de crecimiento de moho y hongos (ASTM G21)	0	0
Temperatura en servicio	Menos de 54°C (130°F)	Menos de 54°C (130°F)
Temperatura de almacenamiento	Menos de 54°C (130°F)	Menos de 54°C (130°F)
Vida útil	Sin límite	Sin límite
Envejecimiento en horno	Sin cambio 60°C (140°F)	Sin cambio 60°C (140°F)
Exposición a la humedad	Sin cambio 60°C (98% H. R.)	Sin cambio 60°C (98% H. R.)
Envejecimiento acelerado UL	Aprobado	Aprobado

	REQUISIT OS DE LA CINTA ENVOLVENTE Y EL COLLARÍ N DE SUJECIÓ N										
Tipo d envol	e cinta vente	RED2	RED	RED2	RED	RED2	RED	RED2	RED	RED2	RED
Tamaño comercial (pulg.)	DE de la tubería (pulg.)	1a. c	capa	2a. d	capa	За. (capa	Тс	otal	Collarín d	e sujeción
1,5	1,9	6,8	7,5					6,8	7,5	7,9	8,7
2,0	2,375	8,3	9,1					8,3	9,1	9,5	10,3
2,5	2,875	9,9	10,7	10,7	12,3			20,6	22,9	11,9	13,6
3,0	3,5	11,8	12,6	12,6	14,1			24,3	26,7	13,9	15,5
3,5	4,0	13,4	14,1	14,1	15,7	14,9	17,3	42,4	47,1	16,3	18,7
4,0	4,5	14,9	15,7	15,7	17,3	16,5	18,8	47,1	51,8	17,9	20,3
6,0	6,625	21,6	22,4	22,4	24,0	23,2	25,5	134,3 ¹	143,71	24,71	27,2 ¹

Requiere 2 pilas de 3 capas de cinta envolvente y un collarín de sujeción WSC8RED (3" de profundidad).

Información preventiva

Consulte las hojas de datos de seguridad (SDS) para obtener información adicional sobre la manipulación y desecho seguros de este material. Lave las áreas de contacto con la piel con agua y jabón. Evite el contacto con los ojos.

Disponibilidad

Las cintas envolventes SpecSeal® están disponibles con los distribuidores autorizados de Specified Technologies Inc. (STI). Para obtener información adicional de compra y técnica o para obtener los nombres y la ubicación del representante o distribuidor más cercano, de este u otros productos de Specified Technology, llame al 1-800-992-1180 o visite www.stifirestop.com

	INFORMACIÓN DE PEDIDO										
Número de catálogo	Número UPC	Tamaño	(UOM) Cant.	Cant. por caja	Peso (Cada uno)						
SSWRED	730573037027	Rollo de 3,7 m (12") x 38 mm (1-1/ 2") x 6,4 mm (1/4")	1	10	1,33 kg (2,92 lb)						
SSWRED2	730573037126	Rollo de 3,7 m (12') x 38 mm (1-1/2") x 3,2 mm (1/8")	1	8	0,60 kg (1,33 lb)						
SSWRC2	730573037522	Collarín de sujeción de lámina metálica galvanizada calibre 30 de 1-1/2" de ancho para tuberías de tamaño comercial ≤ 152 mm (6"), rollo de 7,6 m (25')	1	1	2,35 kg (5,19 lb)						
WSC-8RED	730573037546	Collarín de sujeción formado previamente de 76,2 mm (3") de ancho para tuberías de tamaño comercial de 152 mm (6")	1	1	0,64 kg (1,42 lb)						

AVISO IMPORTANTE: TODAS LAS AFIRMACIONES, I NFORMACIÓN TÉCNICA Y RECOMENDACIONES QUE CONTIENE ESTE DOCUMEN TO SE BASAN EN PRUEBAS QUE SE CONSIDERA N CONFIABLES, P ERO NO SE GARANTIZA LA EXACTITUD NI LA INTEGRIDAD DE ESTAS.

STI HABITU ALMENT E GARANTIZ A SUS PRODUCTOS POR UN AÑO COMPLET O. PARA VER DETALLES COMPLE TOS DE NUESTRA GARANTÍ A ESTÁNDAR, VISITE WWW.STIFIREST OP.COM/

MEMBER

HECHO EN EE.UU. - © 2021 SPECIFIE DT ECHNOLOGIES INC.

SPECSEAL® CS LÁMINA COMPUESTA CORTAFUEGOS PARA SELLADO DE ESCALERILLAS

La lámina compuesta SpecSeal® es un panel resistente al fuego liviano y rígido que consta de una capa intumescente unida a una lámina de acero galvanizado reforzada con una malla de alambre de acero cubierta con una lámina de aluminio. La lámina compuesta SpecSeal® está diseñada para sellar aperturas medianas a grandes con una variedad de distintos elementos penetrantes en pisos y muros con resistencia a incendios. Cuando se expone a temperaturas mayores a 177°C (350°F), la lámina compuesta SpecSeal® se expande un mínimo de 15 veces para formar un residuo carbonoso denso y aislanteque minimiza la transferencia de calor.

Aplicaciones

Las láminas compuestas SpecSeal® se usan junto con otros productos cortafuegos de STI para sellar penetraciones a través de muros y pisos con resistencia a incendios para tuberías metálicas y no metálicas, tuberías aisladas, bandejas de cables, cables,


conductos, conductos de acero, canalizaciones eléctricas o aperturas vacías. La lámina compuesta SpecSeal® proporciona un sello eficaz contra el fuego, el humo y los subproductos de la combustión para aperturas de cualquier forma en conjuntos de construcción comunes.

Especificaciones

La lámina compuesta es un panel liviano compuesto por una capa intumescente unida a una lámina de acero galvanizado reforzada con una malla de alambre de acero cubierta con una lámina de aluminio. La lámina compuesta debe proporcionar un mínimo de expansión libre de 15 veces y no debe contener ingredientes expansivos solubles en

agua. La lámina compuesta debe estar certificada por UL y probada según los requisitos de las normas ASTM E814 (UL1479) y CAN/ULC-S115.

Divisiones especificadas

División 7 07 84 13 Cortafuego de penetración División 22 22 00 00 Tuberías División 23 23 00 00 HVAC División 26 26 00 00 Eléctrico

Desempeño

La lámina compuesta SpecSeal® es la base para los sistemas que cumplen con los rigurosos criterios de las normas ASTM E814 (UL1479) y CAN/ ULC-S115. Los sistemas UL se probaron para todas las formas comunes de construcción y muchos elementos penetrantes comunes con una clasificación de hasta 4 horas.

Desempeño

La lámina compuesta SpecSeal® es la base para los sistemas que cumplen con los rigurosos criterios de las normas ASTM E814 (UL1479) y CAN/ ULC-S115. Los sistemas UL se probaron para todas las formas comunes de construcción y muchos elementos penetrantes comunes con una clasificación de hasta 4 horas.

Características y ventajas

Liviana para facilitar la manipulación y la fabricación, y para tener menos peso colgando en las paredes

Fácil de cortar con herramientas de corte de láminas de metal

Altamente intumescente, se expande hasta 15 veces

Reducción de orificios, se utiliza junto con otros productos SpecSeal® o EZ-Path® para reducir aperturas grandes

Versátil, se adapta a un amplio rango de aplicaciones complejas

Se puede pintar

Mantenimiento

Normalmente no se requiere mantenimiento, sin embargo, se recomienda una inspección periódica de las barreras con resistencia a incendios para asegurarse de que se selló o reparó correctamente cualquier nueva apertura, modificaciones de los cortafuegos instalados previamente o las áreas que muestran daños físicos. El sellado posterior o las reparaciones se deben realizar utilizando productos SpecSeal® según el diseño original aprobado.

RENOVACIÓN: Agregar elementos penetrantes: Quite el sellador/masilla cortafuego y la lámina compuesta. Agregue los elementos penetrantes. Corte la lámina compuesta SpecSeal® para que quepan los nuevos elementos penetrantes. Selle según el diseño original certificado por UL.

PROPIEDADES FÍSICAS										
Grosor nominal	2,5 mm (0,1 pulg.)	Temperatura de almacenamiento	Menos de 54°C (130°F)							
Peso nominal	Peso nominal Intumescente de 6,9 kg/metro cuadrado (1,4 lb/pie cuadrado)		No se ve afectado							
Comienzo de la expansión	177°C (350°F)	Clasificación STC	55 (Relacionado con la construcción específica) (ASTM E 90-04)							
Volumen de expansión	15 veces (expansión libre habitual)	Contenido VOC	N/A							
Temperatura en servicio	-23°C (-10°F) a 54°C (130°F)	Vida útil	Sin límite							

Limitaciones

Este producto fue diseñado para un uso seguro con plásticos. Este se ha utilizado ampliamente y con éxito junto con diversos tipos de tuberías, tubos y aislamientos de cable plásticos. Sin embargo, las variaciones en estos materiales impiden garantizar la compatibilidad. STI recomienda encarecidamente al usuario que consulte al fabricante de las tuberías, tubos o cables sobre cualquier sensibilidad conocida o posibles restricciones antes de aplicar este producto.

Selección del sistema

Para encontrar un sistema cortafuego o crear una presentación, visite https://systems.stifirestop.com/ para usar la Búsqueda de sistemas y generador de presentaciones. También puede visitar el Directorio en línea de certificaciones UL/iQTM de productos de UL para ver listados completos. (Sistemas cortafuego).

Servicio técnico

Specified Technologies Inc. proporciona asistencia técnica de cobro revertido para ayudarlo en la selección de productos y el correcto diseño de instalación. Los diseños de sistemas UL adecuados para fines de presentación o especificaciones están disponibles a pedido. Se proporciona una biblioteca completa de información técnica en el sitio web de la empresa www. stifirestop.com que incluye Hojas de datos de seguridad (SDS).

Información preventiva

Consulte las hojas de datos de seguridad (SDS) para obtener información adicional sobre la manipulación y desecho seguros de este material.

Disponibilidad

La lámina compuesta SpecSeal® está disponible con los distribuidores autorizados de Specified Technologies Inc. (STI). Para obtener información adicional de compra y técnica o para obtener los nombres y la ubicación del representante o distribuidor más cercano, de este u otros productos de Specified Technology, llame al 1-800-992-1180 o visite www.stifirestop.com

	INFORMACIÓN DE PEDIDO								
Número de catálogo	Número UPC	Tamaño	(UOM) Cant.	Cant. por caja	Peso (Cada uno)				
CS1628	730573116289	41 cm x 71 cm (16" x 28")	1	1	2,63 kg (5,80 lb)				
CS2436	730573124369	61 cm x 92 cm (24" x 36")	1	1	4,83 kg (10,65 lb)				
CS3636	730573141366	92 cm x 92 cm (36" x 36")	1	1	7,10 kg (15,65 lb)				
CS3641	730573136416	92 cm x 104 cm (36" x 41")	1	1	7,53 kg (16,60 lb)				
CS2852	730573136362	71 cm x 132 cm (28" x 52")	1	1	5,87 kg (12,95 lb)				

AVISO IMPORTANTE: TODAS LAS AFIRMACIONE S, INFORMACIÓ NT ÉCNICA Y RECOMENDACIONE S QUE CONTIENE ESTE DOCUMENT O SE BASAN EN PRUEBA S QUE SE CONSIDERAN CONFIABLES , PERO NO SE GARANTIZ A LA EXACTITUD NI LA INTEGRIDA D DE ESTAS.

STI HABITU ALMENT E GARANTÍA ESTÁNDAR, V ISITE WWW.STIFIREST OP.COM/LEGAL/WARRANT Y

HECH O EN EF.UU. - @ 2021 SPECIFIE DT ECHNOL OGIES INC.

FR BOARD PANEL CORTAFUEGOS PARA SELLADO DE ESCALERILLAS

Protecta® FR Board ha sido diseñado para mantene la resistencia al fuego de las paredes/suelos atravesados por pasos de instalación. Consiste en un núcleo rígido de lana de roca, sellado con Protecta® FR Coating en 1 o ambas caras. Protecta® FR Board debe usarse junto con Protecta® FR Acrylic para sellar alrededor de los pasos de servicios y el panel. Se emplea para mantener la resistencia al fuego de paredes flexibles, paredes rígidas y forjados atravesados por varios cables, tuberías metálicas, tuberías compuestas y tuberías de plástico.

- Clasificado para todo tipo de construcciones con o sin penetración de pasos de instalaciones.
- · Fácil y rápido de instalar.
- Pasos de instalaciones adicionales fáciles de añadir después de la instalación.
- Permanentemente flexible: acomodará movimientos durante el fuego y movimientos más pequeños en la construcción sobre la que se ha instalado.
- Adecuado para la mayoría de superficies:
- hormigón, mampostería, acero, madera, yeso, vidrio, plástico y la mayoría de las superficies no porosas.
- Puede usarse en longitudes ilimitadas, en paredes con alturas de hasta 1200 mm y en suelos con anchos de hasta 800 mm.
- Puede instalarse en paredes de yeso con o sin marcos alrededor de la apertura.
- Libre de halógenos con fungicidas adicionales.
- · Curado resiste los rayos UVA, la humedad y las heladas.
- · Se puede suministrar con una superficie lisa.
- Adecuado para la mayoría de materiales, excepto en contacto directo con materiales bituminosos.

Candición

Condición:	Listo para su uso, paneles pre-
	recubiertos
Densidad:	Panel: 160 kg/m3 (150 – 170 kg/m3) Recubrimiento: 1,3 – 1,4 kg/l
Durabilidad :	Y1: diseñado para su uso a temperaturas inferiores a 0 ° C con exposición a rayos UVA y humedad, pero sin exposición a la lluvia. Incluye clases inferiores Y2, Z1 y Z2.
No pegajoso:	Max. 75 minutos (sellador)
Formación de pelicula:	Max. 25 minutos (sellador)
Totalmente endurecido:	De 3 a 5 días dependiendo del grosor y la temperatura.
Flexibilidad:	Media, 12.5%.
Conductividad térmica:	0,038 W/mK.
Rango de temperatura:	-30 a 80°C (al endurecerse).
Temperatura de instalación:	5 a 50°C
Clasificación:	Marcado CE: ETA-13/0673 y ETA- 18/0855.
Color:	Superficie blanca, núcleo verde. FR Acrylic: NCS 1202 - Y26R, RAL 9002.

Clasificaciones

Aislamiento acústico

- Rw 55 dB: FR Board individual de 50 o 60mm, 2-S comosellado lineal.
- Rw 29 dB: FR Board individual de 50 o 60mm, 2-S comosellado amplio.
- Rw 52 dB: FR Board doble de 50 o 60 mm, 1-S o 2-S comosellado amplio.
- Rw 53 dB: FR Board 50 o 60 mm, 1-S o 2-S con cavidad de 50mm, sellado amplio.

Clasificación de fuego

Hasta 180 minutos dependiendo de la aplicación.

Empaque y almacenamiento

Embalaje: Panel FR 50x600x1200 mm: 80 piezas por pallet.

Panel FR 60x600x1200mm: 72 piezas por pallet.

Almacenamiento: Puede almacenarse durante un largo período de tiempo. Ha de ser

almacenado en temperaturase ntre 5y 30°C.

Datos de emisión (calidad del aire interior)

Compuesto	Tasa de emisión después de 4 semanas
TVOC	0.20 mg/m2h
Formaldehído	n.d.
Amoníaco	n.d.
Cancerígeno	n.d.

^{*} n.d. <significa no detectado.

El panel Protecta® FR Board cumple con los requisitos de BREEAM de acuerdo con el Protocolo M1 para Pruebas Químicas y Sensoriales de Materiales de Construcción, publicado por RTS versión 15.12.2004. Probado por Eurofins Product Testing, número de informe 392-2014-00000407B.

FR COATING RECUBRIMIENTO CORTAFUEGOS PARA SELLADO DE ESCALERILLAS

Protecta® FR Coating grado spray, es un recubrimiento sellador ablativo diseñado para mejorar, sellar y proteger contra el fuego las fibras minerales. Se basa en un duradero sistema polimérico con rellenos inertes, retardadores de fuego no halogenados y un conservante para resistir el ataque microbiano.

El revestimiento Protecta® FR está diseñado para aplicarse mediante rociado directamente sobre fibras minerales. El revestimiento se seca para dar una superficie blanca sólida y flexible. Finalmente durante la instalación de fibras minerales, el recubrimiento sellador curado reduce la deslaminación y aumenta la estabilidad de la superficie para el adhesivo y aplicación de sellador de fijación. La propiedad ablativa del revestimiento resiste la propagación de llamas y protege las fibras minerales contra la penetración del fuego al reducir significativamente la permeabilidad del núcleo de fibra mineral e impide el paso de calor gases, reduciendo así el aumento de temperatura en el lado no

expuesto. Las fibras minerales recubiertas con Protecta® FR Coating están diseñadas para evitar la propagación del fuego y el humo a través de aberturas en paredes y pisos resistentes al fuego. El sistema también mantendrá el rendimiento del diseño acústico, aire y permeabilidad al humo.

Carcaterísticas

- El recubrimiento aplicado sobre fibras minerales está clasificado para todo tipo de construcciones
- · Simple y muy rápido de instalar
- Resiste los rayos UV, la humedad y las heladas (una vez curado)
- Excelentes propiedades de resistencia al fuego, aislamiento acústico y aire/humo permeabilidad
- Permanentemente flexible se adaptará a los movimientos en la construcción en la que se ha instalado
- Adecuado para la mayoría de las superficies, incluyendo hormigón, ladrillos, mampostería, acero, madera, yeso, vidrio, plásticos y la mayoría de las superficies no porosas
- Se puede utilizar en longitudes ilimitadas en paredes con alturas de hasta 1200 mm y en suelos con anchos de hasta 800 mm
- Puede instalarse en paneles de yeso aislados o no aislados con o sin enmarcando alrededor de la abertura
- · Libre de halógenos con fungicidas añadidos
- Se deben tomar precauciones para evitar que una persona pise un sello horizontal en blanco.
- El revestimiento no está destinado a la aplicación sobre sustratos bituminosos o sustratos que pueden extruir ciertos aceites y plastificantes o solventes.
- No se recomienda el uso del revestimiento en juntas o áreas sumergidas expuesto a alta abrasión.

Condición:	Pasta viscosa lista para usar	
Sistema de curado:	Pérdida de agua	
Durabilidad :	Y1 - Diseñado para uso a temperaturas por debajo de 0°C con exposición a los rayos UV y la humedad, pero sin exposición a la lluvia. Incluye las clases inferiores Y2, Z1 y Z2.	
No pegajoso:	Max. 75 minutos	
Formación de película	Max. 25 minutos	
Reacción al fuego:	Class D-s1, d0	
Totalmente endurecido :	De 3 a 5 días dependiendo del grosor y la temperatura	
Flexibilidad:	+/- 7.5 % (dependiendo del núcleo de fibra mineral utilizado)	
pH:	8,5 – 9,2.	
Densidad	1.3 – 1.4 kg/ltr	
punto de inflamabilidad	Ninguno	
Contenido de sólidos	> 58 % (w/w)	
Rango de temperatura:	-30 a 80°C (cuando se endurece).	
Temp. de aplicación :	+5°C a + 50°C.	
Color:	Blanco	
Vida útil:	Mínimo 25años si se cumplen las condiciones	

AISLAMIENTO ACUSTICO

Descripción Reducción de sonido

Sello lineal de ≤ 120 mm de ancho con revestimiento Protecta FR 1.0 mm WFT de ≥ 50 mm de espesor en ambas caras de lana de roca con densidad \geq 150 kg/m3 Rw 55 dB

El revestimiento Protecta® FR ha sido probado en BM Trada (acreditado por UKAS); según EN ISO 10140-2:2010.

Instrucciones de uso

- 1. Antes de instalar el núcleo de lana de roca de fibra mineral, asegúrese de que la superficie de todas las construcciones circundantes está libre de todo material suelto contaminantes, polvo y grasa. La lana de roca debe estar seca, y cualquier pieza suelta grande debe ser cepillada antes pulverización
- 2. El revestimiento Protecta® FR es a base de agua, por lo que en casos donde la corrosión protección es un problema, algunos metales pueden requerir una barrera entre el sello y la superficie antes de esta instalación.
- 3. Seleccione el tipo de núcleo de lana de roca y ajuste por fricción en el sello según la tabla de resistencia al fuego de. Ficha técnica de fabricante. Cualquier brecha o las imperfecciones de la lana de roca deben rellenarse con Protecta® FR Acrílico. Cuando la lana de roca tenga una densidad de 150 kg/m3 o superior, todos las juntas deben sellarse con Protecta® FR Acrylic en ambos lados antes de revestimiento.
- 4. Rocíe y aplique el revestimiento Protecta® FR a la lana de roca de acuerdo con las tabla de resistencia al fuego de ficha técnica del fabricante. Las presiones de pulverización dependerán de el tipo de bomba y boquilla utilizada aproximadamente 1700 a 2300 psi usando una propina de 25 a 35 mil. Aplique el revestimiento con movimientos suaves y con el mínimo de exceso de rociado para lograr un espesor de película uniforme y secado constante a través de la lana de roca.
- 5. Calcule un mínimo de 1,0 o 1,2 litros de revestimiento Protecta® FR por m2 . El espesor de película húmeda requerido generalmente se logra cuando la superficie tenga un acabado blanco apropiado y satisfactorio cuando esté seca. 6. El exceso de rociado puede aumentar los tiempos de secado. Los tiempos de secado dependerán en el espesor de la película, la temperatura ambiente y la humedad y puede ser reducido mediante el uso de hornos de secado y/o ventiladores.
- 7. El revestimiento Protecta® FR se puede repintar con la mayoría de las emulsiones o pinturas alquídicas. (brillo) pinturas.

Salud y seguridad

Lave el material de la piel mientras aún está húmedo. Material en contacto con los ojos deben lavarse inmediatamente con agua. Busque consejo médico si persiste el malestar. Se puede encontrar información más detallada en el correspondiente Hoja de datos de seguridad del revestimiento Protecta® FR.

Empaque y almacenamiento

Embalaje:	Protecta® FR Grado spray, está disponible en bidones de acero de paredes lisas
	revestidos de plástico de 200 litros o en cubos de plástico de 8 litros.
Duración:	Hasta 5 meses cuando se almacena en contenedores sin abrir
	bajo condiciones frescas y secas. EVITE LAS HELADA y los extremos
	de temperatura Almacenado entre + 5 °C y + 30 ° C

Estándares de prueba

Estas instrucciones de instalación y la hoja de datos técnicos se basan en el Evaluación Técnica Europea del producto emitida de acuerdo con reglamento (EU) n.º 305/2011 sobre la base del EAD 350454-00-1104, Septiembre de 2017, probado según EN 1366-3, -4 y -12 junto con EN 1363-1. El producto posee las siguientes marcas de aprobación: Marca CE, UL-EU Certificado, Certificado de Cumplimiento de los UAE y Evaluación AS.

PROTECCIÓN DE ESTRUCTURAS METÁLICAS Y CONCRETO

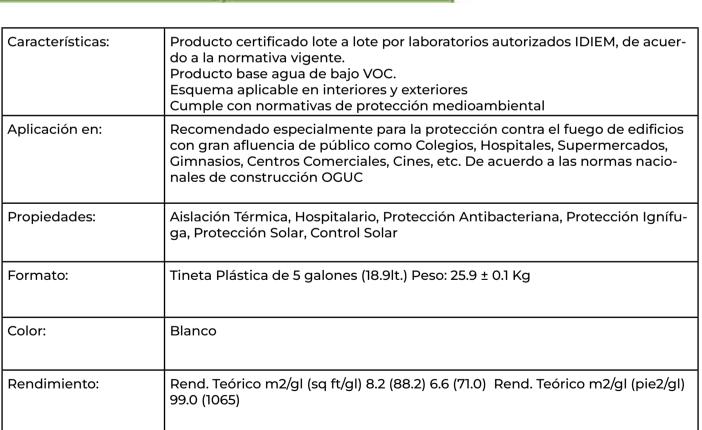
PINTURA CORTAFUEGO INTUMESCENTE

FIRE CONTROL F-60 y F-90

Synixtor ofrece un revestimiento intumescente base agua de bajo VOC, desarrollado por Sherwin Williams especialmente para protección de estructuras metálicas contra la acción directa del fuego. Cumple con la resistencia al fuego exigida por la Norma Chilena NCh 935/1 Of. 97.

En presencia de fuego directo o calor, el revestimiento intumescente se expande y se carboniza, formando una gruesa capa de escoria esponjosa adherida al metal que actúa como barrera aislante, retardando el tiempo en que el sustrato alcanza la temperatura de 500° C en que el acero se deforma y la estructura colapsa.

Sus ventajas:



Producto certificado lote a lote por IDIEM

Tabla espesores certificados OGUC F-60 IDIEM Nº 325.5331	
Espesores	Entre 700 y 1800 micras
Masividad	Hasta 330 m ⁻¹

Área de desempeño:	Público Inmobiliario Retail Residencial Comercial Industrial
Certificaciones:	IDIEM N° 325.5331

Instalación:

Precauciones:

En uso interior y para mejorar la nivelación y estética, se recomienda el uso de una mano de Esmalte de terminación, en el color deseado.

En exteriores, se recomienda aplicar una mano de esmalte de terminación acrílico o poliuretano para proteger la pintura intumescente.

El producto no debe ser aplicado directamente sobre el metal sin anticorrosivo ni en ambientes de alta humedad y condensación.

En caso de usar en condiciones de alta humedad, se recomienda sellar con un esmalte apropiado

Proceso de aplicación:

- 1. Homogeneizar el contenido del envase, revolviendo hasta eliminar totalmente los grumos e incorporar todos los sedimentos.
- 2. Aplicar el producto sobre la superficie totalmente imprimada con el anticorrosivo adecuado o recomendado.
- 3. La capa debe ser pareja y uniforme protegiendo especialmente bordes y cordones de soldadura.
- 4. Antes de aplicar la mano siguiente, el revestimiento deberá haber secado durante 24 horas como mínimo, a 20 $^{\circ}$ C de temperatura ambiente y en ambiente seco.
- 5. Igual tiempo se debe esperar antes de manipular las piezas pintadas.
- 6. Intersticios y zonas de difícil acceso deben ser sellados con Masilla Epóxica tipo 342403, luego de aplicado el anticorrosivo y posteriormente recubrir con el espesor especificado de Intumescente. La idea es que no queden zonas sin el recubrimiento, que actúen como puentes térmicos en caso de incendio
- 7. Rápido secado: 1 hora al tacto, 12 horas para manipulación.

Recomendaciones

Pinte con una capa adicional todas las uniones, soldaduras y ángulos agudos para evitar falla prematura en estas áreas.

Cuando use aplicación spray, use un 50% de traslape con cada pasada de pistola para evitar vacíos, áreas sin cubrimiento y poros. Si es necesario, distribuya el spray cruzado en ángulo recto.

La dilución excesiva del material puede afectar el espesor de la película, apariencia y rendimiento.

Para evitar bloqueo del equipo spray. Filtrar la pintura antes de la aplicación.

Eliminar el filtro de la pistola durante la aplicación de la pintura intumescente.

Lavar el equipo antes de usarlo o después de una pausa prolongada usando Agua Limpia.

Mantener el recipiente de presión a nivel del aplicador para evitar bloqueo de la línea de fluido debido al peso del material. Devuelva la pintura en la línea de fluido en pausas intermitentes, pero mantenga la agitación en el recipiente de presión.

Los rangos de aplicación se calculan en sólidos por volumen y no incluyen factor de pérdida de aplicación por perfil de la superficie, aspereza o porosidad de la superficie, habilidad y técnica del aplicador, método de aplicación, diversas irregularidades de la superficie, pérdida de material durante mezclado, derrames, sobre-dilución, condiciones climáticas y espesor excesivo de la película.

La aplicación de la pintura sobre o bajo el espesor de la película recomendada puede afectar el rendimiento del producto.

La dilución excesiva del material puede afectar el espesor de la película, apariencia y rendimiento. El producto seca por evaporación del agua y coalescencia. Variaciones de temperatura y en la dilución pueden alterar el tiempo de secado y las características de la pintura.

Aplicar en capa gruesa directamente sobre la superficie limpia y seca, repasando cantos, bordes, aristas y cordones de soldadura. No repasar en exceso, para mantener un buen espesor de película.

Los espesores máximos alcanzados en aplicación mediante brocha o rodillo son 4 a 5 mils (100 a 125 micras) de película seca por mano, sin dilución del producto

Consulte la hoja de Información del Producto para propiedades y características adicionales de rendimiento

Equipos de aplicación:

Brocha y Rodillo:

Aplicar en capa gruesa directamente sobre la superficie limpia y seca, repasando cantos, bordes, aristas y cordones de soldadura.

No repasar en exceso, para mantener un buen espesor de película.

Los espesores máximos alcanzados por estos métodos, son 4 a 5 mils (100 a 125 micras) de película seca por capa, sin dilución del producto.

Equipo de Aplicación (Convencional y Airless):

Verificar el funcionamiento del equipo de aplicación a una viscosidad adecuada, antes de vaciar la pintura al estangue.

Aplicar una capa gruesa, la que debe tener un aspecto brillante recién aplicado, traslapando cada pasada con la anterior en un 50%.

Diluyente/Limpieza: Agua Limpia

Equipo Airless

Unidad Bomba 30:1 Presión: 1800 – 2000 psi

Manguera: 3/8" Diámetro interior

Boquilla: .019" – .021" Filtro: Sin Filtrar

Dilución: No requiere

Espesor por capa: 10 - 15 mils (250 - 350 micras) eps.

Equipo convencional:

Se recomienda separadores aceite y humedad Pistola: DeVilbiss JGA

5023

Boquilla Fluido: FX Boquilla Aire: 704

Presión Atomización: 50 psi Presión Fluido 80 - 100 psi

Dilución: Máximo 2% en volumen

Brocha

Brocha: Nylon/Poliéster o Cerda Natural

Dilución La necesaria hasta 10% por volumen

Rodillo

Forro Tejido 3/8" con centro fenólico

Dilución Según se requiera hasta 10% por volumen

Si el equipo de aplicación no es el indicado arriba, un equipo equivalente al indicado puede ser utilizado.

Formato:

Tineta Plástica de 5 galones (18.9lt.) Peso: 25.9 ± 0.1 Kg.

Almacenamiento:

12 meses, envase sin abrir.

PINTURA CORTAFUEGO INTUMESCENTE FIRE TEX F-120

Synixtor ofrece un revestimiento intumescente de la gama FIRE TEX a base agua de bajo VOC, desarrollado por Sherwin Williams especialmente para protección de estructuras metálicas contra la acción directa del fuego, su característica principal es el rating de protección hasta F-180 minutos de acuerdo a estándares internacionales (BS Standard) y secados que van desde rápido a ultra rápido

En presencia de fuego directo o calor, el revestimiento intumescente se expande y se carboniza, formando una gruesa capa de escoria esponjosa adherida al metal que actúa como barrera aislante, retardando el tiempo en que el sustrato alcanza la temperatura de 500° C en que el acero se deforma y la estructura colapsa.

Sus ventajas:

de agua



Rating F-120 hasta F-180

Columna A tiene 3200µm (3.2mm) de esquema intumescente aplicado Columna B tiene 1070µm (1.07mm) de esquema intumescente aplicado

Columnas de aceto después de la prueba de luego

Características:	Producto base agua de bajo VOC. Esquema aplicable en interiores y exteriores Cumple con normativas internacionales de protección medioambiental
Aplicación en:	Recomendado especialmente para la protección contra el fuego de edificios con gran afluencia de público como Colegios, Hospitales, Supermercados, Gimnasios, Centros Comerciales, Cines, etc. De acuerdo a las normas nacionales de construcción OGUC
Propiedades:	Aislación Térmica, Hospitalario, Protección Antibacteriana, Protección Ignífuga, Protección Solar, Control Solar
Formato:	Tineta Plástica de 5 galones (20lts.)
Color:	Blanco

Rendimiento:	Rend. Teórico m2/gl (sq ft/gl) 1 mil / 25 micras dft 1104 (27.1) Rend. Teórico m2/gl (pie2/gl) 28 (0.7) 92 (2.3)
Área de desempeño:	Público Inmobiliario Retail Residencial Comercial Industrial
Certificaciones:	Certificado Warrington N° CF 5012, TS15, BS476: Parte 20/21 EN 13381-8 & 9

Instalación:

Precauciones:

En uso interior y para mejorar la nivelación y estética, se recomienda el uso de una mano de Esmalte de terminación, en el color deseado.

En exteriores, se recomienda aplicar una mano de esmalte de terminación acrílico o poliuretano para proteger la pintura intumescente.

El producto no debe ser aplicado directamente sobre el metal sin anticorrosivo ni en ambientes de alta humedad y condensación.

En caso de usar en condiciones de alta humedad, se recomienda sellar con un esmalte apropiado

Proceso de aplicación:

- 1. Homogeneizar el contenido del envase, revolviendo hasta eliminar totalmente los grumos e incorporar todos los sedimentos.
- 2. Aplicar el producto sobre la superficie totalmente imprimada con el anticorrosivo adecuado o recomendado.
- 3. La capa debe ser pareja y uniforme protegiendo especialmente bordes y cordones de soldadura.
- 4. Antes de aplicar la mano siguiente, el revestimiento deberá haber secado durante 24 horas como mínimo, a 20 °C de temperatura ambiente y en ambiente seco.
- 5. Igual tiempo se debe esperar antes de manipular las piezas pintadas.
- 6. Intersticios y zonas de difícil acceso deben ser sellados con Masilla Epóxica tipo 342-403, luego de aplicado el anticorrosivo y posteriormente recubrir con el espesor especificado de Intumescente. La idea es que no queden zonas sin el recubrimiento, que actúen como puentes térmicos en caso de incendio

Recomendaciones

Pinte con una capa adicional todas las uniones, soldaduras y ángulos agudos para evitar falla prematura en estas áreas.

Cuando use aplicación spray, use un 50% de traslape con cada pasada de pistola para evitar vacíos, áreas sin cubrimiento y poros. Si es necesario, distribuya el spray cruzado en ángulo recto.

La dilución excesiva del material puede afectar el espesor de la película, apariencia y rendimiento.

Para evitar bloqueo del equipo spray. Filtrar la pintura antes de la aplicación.

Eliminar el filtro de la pistola durante la aplicación de la pintura intumescente.

Lavar el equipo antes de usarlo o después de una pausa prolongada usando Agua Limpia.

Mantener el recipiente de presión a nivel del aplicador para evitar bloqueo de la línea de fluido debido al peso del material. Devuelva la pintura en la línea de fluido en pausas intermitentes, pero mantenga la agitación en el recipiente de presión.

Los rangos de aplicación se calculan en sólidos por volumen y no incluyen factor de pérdida de aplicación por perfil de la superficie, aspereza o porosidad de la superficie, habilidad y técnica del aplicador, método de aplicación, diversas irregularidades de la superficie, pérdida de material durante mezclado, derrames, sobredilución, condiciones climáticas y espesor excesivo de la película.

La aplicación de la pintura sobre o bajo el espesor de la película recomendada puede afectar el rendimiento del producto.

La dilución excesiva del material puede afectar el espesor de la película, apariencia y rendimiento. El producto seca por evaporación del agua y coalescencia. Variaciones de temperatura y en la dilución pueden alterar el tiempo de secado y las características de la pintura.

Aplicar en capa gruesa directamente sobre la superficie limpia y seca, repasando cantos, bordes, aristas y cordones de soldadura. No repasar en exceso, para mantener un buen espesor de película.

Consulte la hoja de Información del Producto para propiedades y características adicionales de rendimiento.

Equipos de aplicación:

Brocha y Rodillo:

Aplicar en capa gruesa directamente sobre la superficie limpia y seca, repasando cantos, bordes, aristas y cordones de soldadura.

No repasar en exceso, para mantener un buen espesor de película.

Equipo de Aplicación (Convencional y Airless):

Verificar el funcionamiento del equipo de aplicación a una viscosidad adecuada, antes de vaciar la pintura al estanque.

Aplicar una capa gruesa, la que debe tener un aspecto brillante recién aplicado, traslapando cada pasada con la anterior en un 50%.

Diluyente/Limpieza: Agua Limpia

Equipo Airless

Unidad Bomba 30:1 Presión: 1800 – 2000 psi

Manguera: 3/8" Diámetro interior

Boquilla: .019" – .021" Filtro: Sin Filtrar Dilución: No requiere

Equipo Convencional

Se recomienda separadores aceite y humedad Pistola: DeVilbiss JGA 5023

Boquilla Fluido: FX Boquilla Aire: 704

Presión Atomización: 50 psi Presión Fluido 80 – 100 psi

Dilución: Máximo 2% en volumen

Brocha

Brocha: Nylon/Poliéster o Cerda Natural

Dilución La necesaria hasta 10% por volumen

Rodillo

Forro Tejido 3/8" con centro fenólico

Dilución Según se requiera hasta 10% por volumen

Si el equipo de aplicación no es el indicado arriba, un equipo equivalente al indicado puede ser utilizado.

Formatos:

Tineta de 5 galones (20 lts.)

Almacenamiento:

10 meses, envase sin abrir. Almacenar en interior entre 4,5°C (40°F) y 38°C (100°F).

MORTERO IGNÍFUGO TECWOOL F F-60 F-120 PARA ESTRUCTURAS DE CONCRETO

Synixtor distribuye para Chile los morteros de protección contra fuego Tecwool® fabricados por la empresa Europea Mercor Tecresa, línea de morteros de lana de roca de fibra larga proyectada con marcado CE (con el numero DITE 11/0185)

Los morteros Tecwool® en base a lana de roca de fibra larga son incombustibles, presentan una gran adherencia sobre cualquier tipo de soporte o superficie, y a diferencia del resto de los morteros de uso en Chile, su aplicación es en seco, no mancha y su primera fase de curado es a las 24 horas.

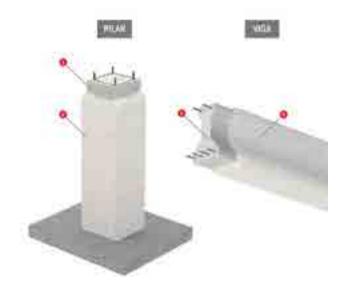
El hormigón esta presente en la mayoría de las edificaciones modernas gracias a la multitud de aplicaciones que posee, sin embargo su solidez se ve seriamente reducida en presencia del fuego.

Debido a esto, Mercor Tecresa comercializa el mortero Tecwool® F, ensayado según norma UNE EV 13381-3, en la cual se determina su gran capacidad como material para protección contra el fuego y para permanecer coherente y fijado a la estructura de hormigón. El mortero Tecwool® F, es el complemento perfecto para todos los casos en que sea necesario dotar con una resistencia contra el fuego a un elemento constructivo.

Tecwool® F se adapta a una gran variedad de soportes, incluso cuando estos están expuestos a vibraciones o movimientos de asentamiento. No se fisura ni se agrieta debido a su gran adherencia y flexibilidad.

Además de aportar una gran resistencia al fuego, el mortero de lana de roca Tecwool® F presenta unas características excepcionales en absorción sonora y en absorción acústica en cámara reverberante. Por último, su valor de conductividad térmica hace que el mortero actúe como un excelente aislante térmico.

Sus ventajas:


Espesor	Menores espesores que otros morteros	El más liviano de todos los morteros
Aplicación	En seco Mayor facilidad y rapidez	del mercado

Características:	Protecciones certificadas F-60, F-120, hasta F-240 Base cemento, lana de roca de fibra larga y aditivos No combustible Ignífugo Fabricado con componentes inorgánicos No tóxico, ni patógeno Resistente a hongos Clase B de absorción acústica Protege contra corrosión de acero
Aplicación en:	Protección en elementos estructurales como losas, pisos, cubiertas, paredes, vigas y pilares de hormigón ligero, normal o pesado y de las clases de resistencia 20/25 (LC/C/HC) a 50/60. El elemento puede contener barras de armadura de acero.
Propiedades:	Aislación Acústica, Aislación Térmica, Hospitalario, Producto con componentes inorgánicos, Protección Antibacteriana, Protección Ignífuga.
Formato:	sacos de 25 kg en pallets de 600 kg.

Acabados:	Rugoso, liso, pintado
Rendimiento:	3kg/m3 cm
Área de desempeño:	Público Inmobiliario Retail Residencial Comercial Industrial
Certificaciones:	UNE, EN, ASTM

Protección de estructura de hormigón

Protección de pilares y vigas

Especificaciones Técnicas:

Tecwool® F está fabricado con componentes inorgánicos como es la lana de roca, clasificada según Directiva Europea 67/548 CEE, como Xi; R.38 (sustancias exentas de todo riesgo para la salud).

Asimismo no es tóxico ni patógeno, está carente de asbestos y sílice cristalina en estado libre y no se ve afectado por el crecimiento de hongos. A continuación las especificaciones técnicas:

Densidad del mortero a granel	250 Kg/m³ ± 10%
Densidad aparente del mortero endurecido	328 Kg/m³ ± 10%
Densidad aparente del mortero fresco	464 Kg/m³ ± 10%
Alcalinidad (valor del pH)	12.4

Conductividad térmica	0,053 W/mk
Permeabilidad al va- por de agua	2,1 (μ)
Resistencia a flexión	0,09 Mpa
Resistencia a compresión	0,24 Mpa
Asbestos sílice cristalino estado libre	Carente
Clase de absorción	Clase B
Adherencia	0,011 N/mm2 fallo.

Instalación:

Máquina de aplicación:

El proceso de proyección se realizará mediante máquina de proyección neumática, ésta impulsa el mortero Tecwool® F en seco por la manguera hasta la boquilla, es aquí donde se realiza la mezcla con abundante agua pulverizada, para proceder posteriormente a su aplicación.

La máquina de proyectar proporciona un caudal de hasta 30 kg/min. La aplicación se realizará con la pistola de proyección perpendicular al soporte y a una distancia entre 50 y 150 cm. La relación agua/mortero será aproximadamente de 1,5/1 kg.

Previo a la aplicación:

Antes de aplicar el mortero sobre cualquier superficie, debemos tener en cuenta las siguientes consideraciones:

- 1. La superficie a proteger estará limpia de polvo, aceites, residuos, desencofrantes, partículas mal adheridas, restos de pintura, etc.
- 2. Es conveniente dar un ligero regado con el agua de la propia manguera de aplicación para así elimina la suciedad que pudiera tener el paramento. Esta pulverización, también servirá para que se alcance un equilibrio térmico entre el mortero y la superficie aplicada.

Formatos:

Comercialización en sacos de 25kg en pallets de 600kg.

Colores / Terminaciones:

Rugoso, liso o pintado en función de la estética requerida.

Para acabados lisos se debe pasar un rodillo una vez finalizada la proyección y presionar levemente sobre el mortero húmedo hasta conseguir la terminación deseada.

Almacenamiento:

Conservar en un lugar seco y bien ventilado

Es posible pintar el mortero con revestimientos acrílicos elásticos que formen barrera al paso de vapor de agua; antes de proceder al pintado hay que asegurarse que el mortero esta completamente seco (28 días).

MORTERO IGNÍFUGO TECWOOL F F-60 F-120 PARA ESTRUCTURAS DE CONCRETO

La gran facilidad de montaje que ofrece el tipo de forjados, en los que la chapa metálica perfilada actúa como base del encofrado para añadir posteriormente una losa de hormigón, hace que nos encontremos en múltiples ocasiones con estas soluciones tanto en obras nuevas como en rehabilitaciones. Sin embargo, la propia simplicidad de la solución, implica el riesgo de que la chapa metálica, en caso de incendio, quede a merced directa del fuego produciendo una gran vulnerabilidad en el forjado.

Como respuesta a la demanda de este requerimiento, Synixtor ofrece para Chile solución certificada la cual brinda resistencia al fuego de "Losa de hormigón con placa colaborante F-120 protegida con mortero Tecwool F"

El mortero proyectado de lana de roca y cemento Tecwool F, fabricado por mercor tecresa® y concebido específicamente para la protección contra el fuego de todo tipo de estructuras y paramentos que se presentan en construcción. Avalado por múltiples ensayos de reacción y de resistencia realizados en laboratorios oficiales. Tecwool® F el complemento perfecto para todos los casos en que sea necesario dotar con una resistencia contra el fuego a un elemento constructivo, se adapta a una gran variedad de soportes, incluso cuando estos están expuestos a vibraciones o movimientos de asentamiento.

Carcaterísticas:

CARACTERISTICAS

- Protecciones certificadas para losa de hormigón con placa colaborante F-120.
- Base cemento, lana de roca de fibra larga y aditivos
- No combustible
- Ignífugo
- Fabricado con componentes inorgánicos
- No tóxico, ni patógeno
- Resistente a hongos
- Clase B de absorción acústica
- Protege contra corrosión de acero
- No se fisura ni se agrieta debido a su gran adherencia v flexibilidad

COLOR. Gris

APARIENCIA. Debido a la versatilidad del producto, pueden obtenerse acabados rugosos o lisos. Si es necesario un acabado decorativo, es posible aplicar un revestimiento acrílico sobre el mortero.

SEGURIDAD Y SALUD

Tecwool® F está fabricado con componentes inorgánicos como es la lana de roca, clasificada según Directiva Europea 67/548 CEE, como Xi; R.38 (sustancias exentas de todo riesgo para la salud). Asimismo no es tóxico ni patógeno, está carente de asbestos y sílice cristalina en estado libre y no se ve afectado por el crecimiento de hongos. En el manejo del Mortero Tecwool®, se deben tener en cuenta las siguientes consideraciones:

- Se recomienda la protección de las manos con guantes de protección.
- Se recomienda la protección de los ojos con gafas de cierre herméticas.
- Se recomienda el uso de mascarilla antipolvo.
- Respetar las medidas de trabajo usuales.
 Para más información, consultar la ficha de seguridad del producto.

LIMITACIONES

Tecwool® F no es aplicable por encima de 40 ºC ni por debajo de 2 ºC.

Instalación:

Tecwool® F se proyecta mediante máquina neumática conforme a las siguientes especificaciones técnicas:

- · La superficie a proteger no necesita ningún tipo de imprimación previa, malla o cualquier otro tipo de soporte que sirva de adherencia al mortero.
- · La superficie a proteger estará limpia de polvo, aceites, residuos, partículas mal adheridas, restos de pintura, etc.

Es conveniente dar un ligero regado con el agua de la propia manguera de aplicación, para así eliminar la suciedad que pudiera tener el paramento. Esto también proporcionará que se alcance un equilibrio térmico entre el mortero y la superficie aplicada.

Tecwool® F puede proporcionar diferentes acabados: rugoso, liso, pintado, etc., en función de la estética requerida. Para acabados lisos se debe pasar un rodillo una vez fi nalizada la proyección y presionar levemente sobre el mortero húmedo hasta conseguir la terminación deseada. Es posible pintar el mortero con revestimientos acrílicos elásticosque formen barrera al paso de vapor de agua. Antes de proceder al pintado hay que asegurarse que el mortero está completamente seco (28 días). Hay que pulverizar someramente con agua el mortero una vez proyectado para que el fraguado del

Hay que pulverizar someramente con agua el mortero una vez proyectado para que el fraguado del cemento se realice en condiciones óptimas.

Emparque y manejo de almacenamiento:

Envasado: 5 galones (18,925 Lts)

Vida Útil en Envase: 12 meses

Almacenamiento:

Conservar en lugar seco y bien ventilado.

Comercialización sacos de 25 kg en palets de 600 kg.

ENSAYO

NORMA

□ UNE ENV 13381-5

LABORATORIO

№ ENSAYO

□ 10/100324-148

ESTUDIO DE ASIMILACION DE RESISTENCIA AL FUEGO

- Losa de hormigón con placa colaborante
 F-120 protegida con mortero Tecwool F
- IPF-INF-042-22 / N° Dictuc 1585280

TECWOOL F F-15 A F-120 PARA ESTRUCTURA METÁLICA

Synixtor distribuye para Chile los morteros de protección contra fuego Tecwool® fabricados por la empresa Europea Mercor Tecresa, la única línea de morteros de lana de roca de fibra larga proyectada en seco con marcado CE (con el numero DITE 11/0185) y homologado en Chile por DICTUC, según norma NCH 935 con certificado numero 1456480.

Los morteros Tecwool® en base a lana de roca de fibra larga son incombustibles, presentan una gran adherencia sobre cualquier tipo de soporte o superficie, y a

diferencia del resto de los morteros de uso en Chile, su aplicación es en seco, no mancha y su primera fase de curado es a las 24 horas.

Una de las ventajas fundamentales de las estructuras metálicas de acero es que poseen una gran resistencia por unidad de peso, esto les otorga una tremenda versatilidad y la posibilidad de realizar estructuras complejas y a la vez livianas.

Sin embargo, uno de los inconvenientes que presenta es que posee una altaonductividad térmica. Avalado por múltiples ensayos de reacción y de resistencia realizados en laboratorios oficiales, hacen del mortero Tecwool® F el complemento perfecto para todos los casos en que sea necesario dotar con una resistencia contra el uego a un elemento constructivo metálico.

Tecwool® F se adapta a una gran variedad de soportes, incluso cuando estos están expuestos a vibraciones o movimientos de asentamiento. No se fisura ni se agrieta debido a su gran adherencia y flexibilidad.

Además de aportar una gran resistencia al fuego, el mortero de lana de roca de fibra larga Tecwool® F presenta unas características excepcionales en absorción sonora y en absorción acústica en cámara reverberante. Por último, su valor de conductividad térmica hace que el mortero actúe como un excelente aislante térmico.

Protección de elementos de acero

Sus ventajas:

acabados

Características:	Protecciones certific adas F-60,F-120,h asta F-240
	Base cemento, lana de roca de fibral arga ya ditivos
	Noc ombustible
	Ignífugo
	Fabricadoc on componentesi norgánicos
	Not óxico, ni patógeno
	Resistenteah ongos
	ClaseB de absorcióna cústica
	Protegec ontrac orrosión de acero
Aplicacióne n:	Protección en elementose structurales de acero, vigas,
	pilares, estructura techumbrey elementosd et ensión.
Propiedades:	Ai slaciónA cústica, Ai slaciónT érmica,H ospitalario,
	Producto conc omponentesinorgánicos, Protección
	Antibacteriana, Protección Ignífuga.
Formato:	sacosd e2 5k ge np allets de 600k g.
Acabados:R	ugoso, liso,p intado
	,
Rendimiento:	3k g/m3cm
Ár ea de desempeño:	Público
· ·	Inmobiliario
	Retail
	Residendal
	Comercial
Certific aciones:	UNE, EN,A STM, NCh

Especificaciones Técnicas:

Tecwool® F está fabricado con componentes inorgánicos como es la lana de roca de

fibra larga clasificada según Directiva Europea 67/548 CEE, como Xi; R.38 (sustancias

exentas de todo riesgo para la salud).

Asimismo no es tóxico ni patógeno, está carente de asbestos y sílice cristalina en estado

libre y no se ve afectado por el crecimiento de hongos. A continuación las especificaciones técnicas:

Densidad delm ortero a granel	250 Kg/m³± 10 %
Densidad aparente del mort eroe ndur ecido	328K g/m³±1 0%
Densidad aparente del morterof resco	464K g/m³±1 0%
Al calinidad(valord el pH)1	2,4
Conductividadt érmica	0,053W /mk
Permeabilidada lv apor de agua	2,1(µ)
Resistenciaaf lexión	0,09 Mpa
Resistenciaac ompresión0	,24M pa
As bestos sílice cristalino estado libreC	arente
Cl ased ea bsorción acústica	ClaseB.
Ad herencia	0,011N /mm2 fallo.

Instalación:

Máquina de aplicación mortero Tecwool® F en seco:

El proceso de proyección se realizará mediante máquina de proyección neumática, ésta impulsa el mortero Tecwool® F en seco por la manguera hasta la boquilla, es aquí donde se realiza la mezcla con abundante agua pulverizada, para proceder posteriormente a su aplicación.

La máquina de proyectar proporciona un caudal de hasta 30 kg/min. La aplicación se realizará con la pistola de proyección perpendicular al soporte y a una distancia entre 50 y 150 cm. La relación agua/mortero será aproximadamente de 1,5/1 kg.

Previo a la aplicación:

Antes de aplicar el mortero sobre cualquier superficie, debemos tener en cuenta las siguientes consideraciones:

- 1. La superficie a proteger estará limpia de polvo, aceites, residuos, desencofrantes, partículas mal adheridas, restos de pintura, etc.
- 2. Es conveniente dar un ligero regado con el agua de la propia manguera de aplicación para así eliminar la suciedad que pudiera tener el paramento. Esta pulverización, también servirá para que se alcance un equilibrio térmico entre el mortero y la superficie aplicada.
- 3. Formatos: Comercialización en sacos de 25kg en pallets de 600kg

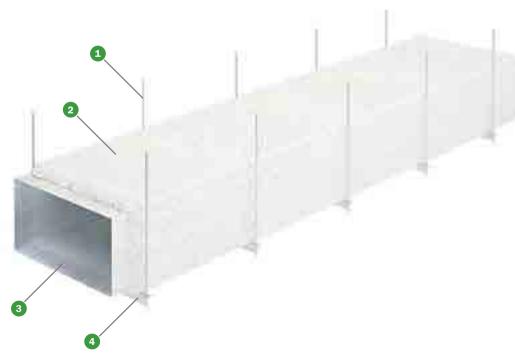
Colores / Terminaciones:

Rugoso, liso o pintado en función de la estética requerida.

Para acabados lisos se debe pasar un rodillo una vez finalizada la proyección y presionar levemente sobre el mortero húmedo hasta conseguir la terminación deseada.

Es posible pintar el mortero con revestimientos acrílicos elásticos que formen barrera al paso de vapor de agua; antes de proceder al pintado hay que asegurarse que el mortero esta completamente seco (28 días).

Almacenamiento:


Conservar en un lugar seco y bien ventilado.

MORTERO IGNÍFUGO TECWOOL F F-60 F-120 PARA DUCTOS METÁLICOS DE VENTILACIÓN

PROTECCIÓN DE CONDUCTOS DE CHAPA HORIZONTAL. EI-60

ENSAYO

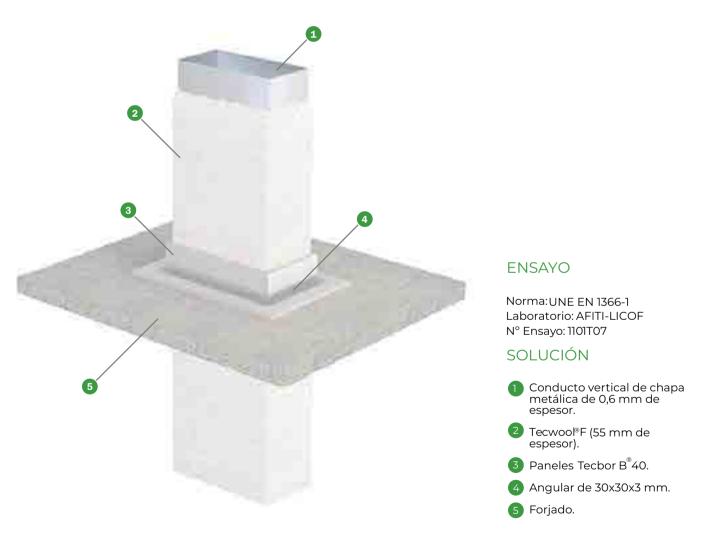
NormaUNE EN 1366-1 Laboratorio:APPLUS N° Ensayo:10/101513-1941

SOLUCIÓN

- Narilla M12
- 2 Tecwool F® (43 mm de espesor)
- 3 Conducto horizontal de chapa metálica de 0,6 mm de espesor.
 - 4 Angular 50x50x5 mm.

Aplicación:

Tecwool® F se proyecta mediante máquina neumática conforme a las siguientes especicaciones técnicas:


La supercie a proteger no necesita ningún tipo de imprimación previa, malla o cualquier otro tipo de soporte que sirva de adherencia al mortero. La supercie a proteger estará limpia de polvo, aceites, residuos, partículas mal adheridas, restos de pintura, etc.

Es conveniente dar un ligero regado con el agua de la propia manguera de aplicación, para así eliminar la suciedad que pudiera tener el paramento. Esto también proporcionará que se alcance un equilibrio térmico entre el mortero y la supercie aplicada.

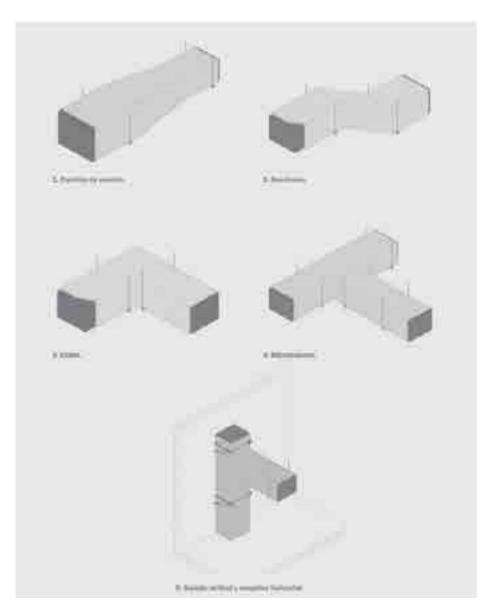
Tecwool® F puede proporcionar diferentes acabados: rugoso, liso, pintado, etc., en función de la estética requerida. Para acabados lisos se debe pasar un rodillo una vez analizada la proyección y presionar levemente sobre el mortero húmedo hasta conseguir la terminación deseada. Es posible pintar el mortero con revestimientos acrílicos elásticos que formen barrera al paso de vapor de agua. Antes de proceder al pintado hay que asegurarse que el mortero está completamente seco (28 días).

Hay que pulverizar someramente con agua el mortero una vez proyectado para que el fraguado del cemento se realice en

PROTECCIÓN DE CONDUCTOS DE CHAPA VERTICAL. EI-120

Aplicación:

Tecwool® F se proyecta mediante máquina neumática conforme a las siguientes especicaciones técnicas: La supercie a proteger no necesita ningún tipo de imprimación previa, malla o cualquier otro tipo de soporte que sirva de adherencia al mortero.


La supercie a proteger estará limpia de polvo, aceites, residuos, partículas mal adheridas, restos de pintura, etc.

Es conveniente dar un ligero regado con el agua de la propia manguera de aplicación, para así eliminar la suciedad que pudiera tener el paramento. Esto también proporcionará que se alcance un equilibrio térmico entre el mortero y la supercie aplicada.

Tecwool® F puede proporcionar diferentes acabados: rugoso, liso, pintado, etc., en función de la estética requerida. Para acabados lisos se debe pasar un rodillo una vez analizada la proyección y presionar levemente sobre el mortero húmedo hasta conseguir la terminación deseada. Es posible pintar el mortero con revestimientos acrílicos elásticos que formen barrera al paso de vapor de agua. Antes de proceder al pintado hay que asegurarse que el mortero está completamente seco (28 días).

Hay que pulverizar someramente con agua el mortero una vez proyectado para que el fraguado del cemento se realice en condiciones óptimas.

Soluciones para conductos:

TECWOOL 825 F-120 PARA PROTECCIÓN DE TÚNELES

Synixtor distribuye para Chile los morteros de protección contra fuego Tecwool® fabricados por la empresa Europea Mercor Tecresa, la única línea de morteros de lana de roca proyectada con marcado CE (con el numero DITE 11/0185)

Los morteros Tecwool® en base a lana de roca son incombustibles, presentan una gran adherencia sobre cualquier tipo de soporte o superficie, y a diferencia del resto de los morteros de uso en Chile, su aplicación es en seco, no mancha y su primera fase de curado es a las 24 horas.

Tecwool® 825 es un mortero de lana de roca, cemento y material refractario en pequeñas proporciones, fabricado por Mercor Tecresa® y diseñado específicamente para la protección contra el fuego en industrias y túneles. Su alto contenido en cemento le confiere una gran robustez, por lo que una vez aplicado mediante proyección, su aspecto final es un bloque monolítico altamente resistente a la erosión y a ambientes semiexpuestos o parcialmente cubiertos.

Ensayado bajo curva de hidrocarburos, RWS y UL, Tecwool® 825 ha sido sometido a simulaciones en las que se evalúan incendios que tengan altas temperaturas durante un periodo de tiempo prolongado. Tecwool® 825 se adapta a una gran variedad de soportes, incluso cuando estos están expuestos a vibraciones o movimientos de asentamiento.

No se fisura ni se agrieta debido a su gran adherencia y flexibilidad. Es un producto que debido a su alcalinidad no ataca el acero, es resistente al fuego a hongos y no libera vapores tóxicos o inflamables.

Sus ventajas:

Espesor	Menores espesores que otros morteros	El más liviano de todos los morteros
Aplicación	En seco Mayor facilidad y rapidez	del mercado

Características: B	ase de cemento, lana de roca y aditivo s No combustible Fabricado con componentes inorgánicos Ignífugo No tóxico, ni patógeno Resistente a hongos altamente resistente a la erosión
Aplicación en:	Protección contra el fuego en industrias y túneles
Propiedades: M	aterial refractario, producto con componentes inorgánicos, protección Ignífuga.
Formato*: (Medidas, dimensiones, espesores, largos, módulos)	sacos de 25 kg en palets de 600 kg.
Acabado / Terminación / Colores / Materialidad:	Rugoso, liso, pintado
Rendimiento*:	8 kg/m3cm
Área de desempeño:	Industria Túneles
Certificaciones: U	NE EN, ASTM

Especificaciones Técnicas:

Tecwool 825 está fabricado con componentes inorgánicos como es la lana de roca, clasificada según Directiva Europea 67/548 CEE, como Xi; R.38 (sustancias exentas de todo riesgo para la salud).

Asimismo no es tóxico ni patógeno, está carente de asbestos y sílice cristalina en estado libre y no se ve afectado por el crecimiento de hongos.

Reacción al fuego N	o combustible/ Euroclase A1
Densidad del mortero a grane l	385 Kg/m3 ± 10%
Densidad seca (después de 28 días)	613 Kg/m3 ± 10%
Densidad aplicada en húmedo	1070 Kg/m3 ± 10%
Conductividad térmica	Máx. 0,045 W/mk s 20 oC
Alcalinidad (valor del pH)	12,5
Resistencia a hongos	No atacable

Instalación:

Tecwool® 825 se proyecta mediante máquina neumática, ésta impulsa el mortero en seco por la manguera hasta la boquilla, es aquí donde se realiza la mezcla con abundante agua pulverizada, para proceder posteriormente a su aplicación.

La máquina de proyectar proporciona un caudal de hasta 30 kg/min. La aplicación se realizará con la pistola de proyección perpendicular al soporte y a una distancia entre 50 y 150 cm. La relación agua/mortero será aproximadamente de 1,5/1 kg.

Previo a la aplicación:

Antes de aplicar el mortero sobre cualquier superficie, debemos tener en cuenta las siguientes consideraciones:

- 1. La superficie a proteger estará limpia de polvo, aceites, residuos, desencofrantes, partículas mal adheridas, restos de pintura, etc.
- 2. Es conveniente dar un ligero regado con el agua de la propia manguera de aplicación para así eliminar la suciedad que pudiera tener el paramento. Esta pulverización, también servirá para que se alcance un equilibrio térmico entre el mortero y la superficie aplicada.

Formatos:

Comercialización en sacos de 25kg en pallets de 600kg

Colores / Terminaciones:

Rugoso, liso o pintado en función de la estética requerida.

Para acabados lisos se debe pasar un rodillo una vez finalizada la proyección y presionar levemente sobre el mortero húmedo hasta conseguir la terminación deseada.

Es posible pintar el mortero con revestimientos acrílicos elásticos que formen barrera al paso de vapor de agua; antes de proceder al pintado hay que asegurarse que el mortero esta completamente seco (28 días).

Almacenamiento:

Conservar en un lugar seco y bien ventilado.

B.6

PYROCRETE 40 DE CARBOLINE MORTERO IGNÍFUGO INDUSTRIAL

Synixtor ofrece dentro de los productos de su catálogo Mortero Pyrocrete 40, Formulación cementícea de alta densidad diseñada para proporcionar la protección contra fuego tanto de hidrocarburos como celulósico para acero estructural, y también se puede utilizar para mejorar la resistencia al fuego del hormigón existente.

CARACTERISTICAS

- · Excelente cobertura.
- · Durabilidad y dureza excepcionales.
- Clasificación UL 1709 frente a fuego de hidrocarburos de hasta 4 horas.
- Clasificación BS 476 frente a fuego de hidrocarburos de hasta 4 horas.
- Clasificación ISO 22899-1 frente a jet fire de hasta 2 horas.
- Clasificación ASTM E119 frente a fuego celulósico de hasta 4 horas.
- Protección criogénica contra inmersión y vertidos de LNG.
- Resistencia a explosiones con sobrepresiones de hasta 3 bares
- Hose Stream Resistance (Resistencia Hose Stream).
- · Tolerante a un amplio rango climatológico.
- Peso ligero. Un quinto del peso requerido para el mismo nivel de protección con hormigón.
- · Ideal para aplicación in situ.
- · Fácil aplicación mediante llana o proyección.
- Incombustible durante y después de su aplicación.
- Libre de sulfatos y cloratos. No requiere imprimación especial.
- Libre de amianto cumple con la regulación EPA Y OSHA
- No se desmenuza. Elevada resistencia a impacto

COLOR Grisáceo moteado.

El color del producto puede variar debido a las variaciones en el color del cemento Portland.

APARIENCIA Texturizado. Cuando sea requerido un acabado liso, éste puede ser realizado con una paleta, cepillo o brocha, pasadas entre 1 y 2 horas una vez haya finalizado la aplicación.

ESPESOR PARA LA APLICACION 12.7 - 15.9 mm (1/2" - 5/8") en el pase inicial.

RENDIMIENTOS TEORICOS 1.66 m2 a 24.5 mm de espesor a 640 kg m3 por saco.

Los resultados en campo variarán dependiendo de los parámetros de aplicación. Cobertura basada en rendimiento teórico bruto sin pérdidas.

AREA DE DESEMPEÑO

- Refinerías
- Petroquímica
- Instalaciones farmacéuticas
- · Plantas de celulosa y papel
- Plataformas marinas offshore
- · Plantas de energía nuclear y convencional
- Fábricas, almacenes, instalaciones institucionales y biomédicas.

LIMITACIONES

No recomendado para ser usado como cemento refractario o cuando las temperaturas de operación continua excedan los 93ºC (200ºF).

Instalación:

Pyrocrete 40 puede ser aplicado mediante proyección y/o llana. El acabado del material dependerá del método de aplicación, las condiciones medioambientales y el equipo empleado.

Antes de proceder a la aplicación de Pyrocrete 40, eliminar por completo de la superficie a recubrir, aceites, grasas, condensación y demás contaminantes, para proceder a una imprimación en caso de esta ser requerida, para conocer la relación de imprimantes aprobados contactar servicio técnico.

En el caso de Acero Galvanizado Pyrocrete 40 es generalmente aplicado directamente sobre superficies galvanizadas. Es recomendado que la totalidad del espesor total requerido, sea aplicado en un plazo de 24 horas. Si esto no fuese posible, las capas subsiguientes deberían ser aplazadas un período de 24 horas, tras las cuáles, el material debería ser empapado con agua antes de la aplicación de las capas posteriores.

El tiempo máximo para alcanzar el espesor completo, es de 3 días a 21°C y con 50% de Humedad Relativa. A mayores temperaturas el plazo debería ser menor.

El material puede ser dejado como proyectado, o acabado con llana para mejorar la estética.

Empaque y manejo de almacenamiento:

Envasado:	22.7 Kg saco (50 lb).
Vida Útil en Envase:	24 Meses (mínimo) cuando el producto sea almacenado bajo
	las condiciones recomendadas
Almacenamiento:	Almacenar en interior, en ambiente seco, entre -29° C y 66° C
	El material debe ser conservado seco o puede que se formen
	aglomeraciones
Peso de Embarque (Aproximado):	25 kg

>148°C Punto de Inflamación (Setaflash):

ENSAYO/CERTIFICACION/LISTADO

UNDERWRITERS LABORATORIES, INC.

Pyrocrete 40 ha sido testado por Underwriters Laboratories, Inc., y ha sido clasificado para uso exterior o interior por UL para los siguientes diseños:

UL 1709

Aumento rápido de la temperatura ante exposición a fuego de hidrocarburos.

Columns – XR705, XR706, XR707 (sin malla)

Cryogenic Testing

Testado de acuerdo a "Specification for Cryogenic Protection and Passive Fire Protection and Passive Fire Protection of Structural Members", fechado en Marzo de 2006 por South Hook LNG Terminal Company Ltd. Test adicional de comportamiento frente a salpicado y derrame para diferentes flujos. Todos los test han sido testimoniados por UL.

ASTM E119 (UL 263, NFPA 251)

Exposición a fuego celulósico

Columns – X760, X761, X762, X763, X784, X785, Y707, Y708

Roof Assembly – P927, P928, P934, P935, P936, P937, P938, P939, P926, P929

Beams - N737, N738, N739, N740, N771, N772, N773, N774, N775, S717, S719, S731, S732,

S733

Floor Ceiling Assembly - D774, D767, D768, D769, D770, D771, D773, D774, D775, D776, D777, D927, D928

Walls – U704

Precast Concrete & Steel Joists - G706, G707, G708, J713, J714, J715, J716

INTERTEK

NFPA 58 Annex H torch / testado chorro de manguera.

BAKERRISK

Protección de sobrepresión a 3 bar.

LLOYD'SR EGISTER

ISO 22899-1 jet fire certificado(2 horas).

WARRINGTON FIRE RESEARCH, LTD.

BS 476: Part 20: Appendix D exposición de fuego hidrocarbono WFRC Ensayo No. 128533

SOUTHWEST TYPE 5GP DE CARBOLINE MORTERO IGNIFUGO COMERCIAL

Un material resistente al fuego aplicado por aspersión (SFRM) a base de yeso, diseñado para la protección contra incendios de acero estructural interior. Formulado y aplicado para cumplir con los requisitos mínimos de resistencia de adhesión del Código IBC enumerados en la "Sección de edificios de gran altura" para edificios de hasta 75' (22,9 m).

Un SFRM de 15 lb./ft³ (240 kg/m³) destinado a la protección contra incendios de columnas estructurales interiores, vigas, vigas, plataformas, paredes, techos, vigas, pisos y unidades de concreto prefabricado. Está probado y certificado para resistencia al fuego de hasta 4 horas. Southwest Type 5GP es una marca comercial de Southwest Fireproofing Products Company.

CARACTERISTICAS

- · No combustible
- Se puede inyectar con Accelerator
 A-20 para un fraguado rápido y mayor rendimiento (opcional)
- · Sin asbesto: cumple con EPA y OSHA
- Sin lana mineral, sin fibras transportadas por el aire.
- Sin estireno sin gases de descomposición tóxicos
- Económico: mantiene el proyecto dentro del presupuesto
- Flexibilidad de diseño con más de 100 diseños UL/cUL

COLOR

Bronceado uniforme

APARIENCIA

Texturizado

ESPESOR DE LA APLICACIÓN

1/2" - 5/8" (12.7 - 15.9 mm) en el pase inicial

RENDIMIENTOS TEÓRICOS

1.66 m2 a 24.5 mm de espesor a 640 kg m3 por saco.

DESTINADO A LA PROTECCIÓN CONTRA INCENDIO DE:

- · Columnas estructurales interiores
- · Vigas.
- Plataformas
- Paredes
- Techos
- Pisos
- · Unidades de concreto prefabricado.

Está probado y certificado para resistencia al fuego de hasta 4 horas. Southwest Type 5GP es una marca comercial de Southwest Fireproofing Products Company.

LIMITACIONES:

No está diseñado para exposición directa permanente al clima o abuso físico excesivo más allá de los ciclos normales de construcción. No se recomienda su uso como cemento refractario o donde las temperaturas de funcionamiento excedan los 200°F (93°C).

Antes de la aplicación, todos los sustratos deben estar limpios y libres de incrustaciones sueltas, suciedad, aceite, grasa, condensación o cualquier otra sustancia que pueda alectar la adhesión. Contacte con el Servicio Técnico de Carboline para más información. La protección contra incendios se debe aplicar a la parte inferior de los conjuntos de cubierta del techo sólo después de que se haya completado todo el trabajo de techado y haya cesado todo el tráfico en el techo. Cuando se aplica a sistemas de techos flexibles, se requiere utilizar Southwest Tipo DK3 (capa de salpicaduras). También asegúrese de que todo el trabajo en el techo esté completo y sea hermético antes de comenzar la instalación de protección contra incendios. El tráfico en el techo se limitará al mantenimiento después de aplicar y curar la protección contra incendios. No se aplicará ninguna protección contra incendios antes de finalizar el trabajo de concreto en la plataforma de piso de acero.

Envasado: Sacos de 22,7 kg

Vida Útil en Envase: 12 meses

Almacenamiento: StorAlmacenar en el interior en un ambiente seco entre32°F -

125°F (0°C - 52°C)El material debe mantenerse seco o se

pueden formar grumos).

CERTIFICACION

UNDERWRITERS LABORATORIES, INC.

UL 263 (ASTM E119) Exposición a fuego celulósico.

Pilares: X771, Y725 Techos: P741, P937

Vigas: N791, S715, S739, S740

Forjedos: D739, D743, D752, D754, D788, D949, J718

TECBOR® PLACA CORTAFUEGO RF DE ÓXIDO DE MAGNESIO PARA ENCAJONAMIENTOS DE ESTRUCTURAS METÁLICAS.

Las estructuras metálicas de acero son un sistema constructivo mundialmente utilizado y extendido. Una de las ventajas fundamentales, es que poseen una gra resistencia por unidad de peso, esto les otorga una tremenda versatilidad y la posibilidad de realizar estructuras livianas y complejas.

Por el contrario, una de las desventajas del acero deriva directamente de su conductividad térmica. Así, durante un incendio, el progresivo aumento de la temperatura unido a la gran transmisión de calor que realiza el acero, produce que la capacidad portante y la resistencia mecánica de las estructuras se vean considerablemente reducidas.

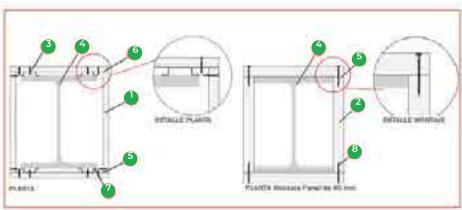
A partir de 250 °C se modifica la resistencia y el límite elástico; y aproximadamente a partir de 500 °C la caída de resistencia es lo suficientemente grande para no soportar su carga de diseño.

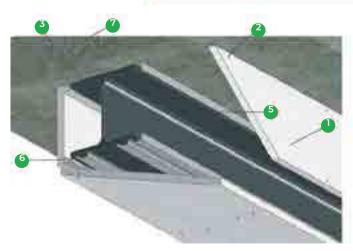
Mercor tecresa® ha realizado múltiples ensayos con Tecbor® según normativa UNE EN 13381-4, en la cual se etermina la contribución de la protección contra el fuego del tablero cuando protegemos elementos estructurales de acero, ya sea sobre vigas, pilares o elementos de tensión. Tecbor® ha sido evaluado para cubrir un amplio rango de perfi les de acero, caracterizados por sus factores de sección. Asimismo está bensayado para varias temperaturas de diseño especificadas en la norma.

- 1. PANELES TECBOR
- 2. PANELES TECBOR B40MM
- 3. TORNILLO AUTORROSCANTE
- 4. PILAR DE ACERO
- 5. PASTA DE JUNTAS TECBOR
- 6. ANGULAR 30X30X0.6MM
- 7. OMEGA 45X15X0.6MM
- 8. TORNILLO AUTORROSCANTE5X80MM

ENSAYO

NORMA: ENV 13381-4 LABORATORIO: APPLUS N° ENSAYO: 10/1483-1014

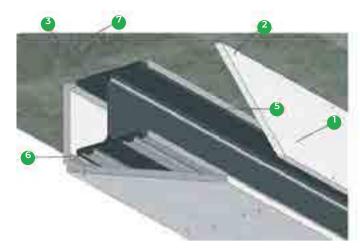

DESCRIPCIÓN DE MONTAJE


Fijar los perfi les omega 45x15x0,6 mm en la parte exterior del ala del perfil metálico a proteger con clavos de acero cada 725 mm.

Fijar el perfi l'angular 30x30x0,6 mm sobre las tiras de panel Tecbor® y estas sobre las omegas, mediante tornillos autorroscantes cada 250 mm. Ensamblar las tiras.

Aplicar Pasta de juntas Tecbor® en las cabezas de los tornillos y en la junta entre paneles.

NOTA: En el caso de que la protección se realice con paneles Tecbor® B de 40 mm es posible atornillar panel con panel a hueso con tornillo 5x80 mm cada 250 mm.



- 1. PANELES TECBOR
- 2. TORNILLO AUTORROSCANTE
- 3. VIGA DE ACERO
- 4. PASTA DE JUNTAS TECBOR
- 5. ANGULAS 30X30X0.6MM
- 6. OMEGA 45X15X0.6MM
- 7. FORJADO
- 8. TACO METÁLICO6X60MM

ENSAYO

NORMA: ENV 13381-4 LABORATORIO: APPLUS N° ENSAYO: 10/1483-1014

DESCRIPCIÓN DE MONTAJE

Fijar los perfi les omega 45x15x0,6 mm en la parte exterior del ala del perfi l metálico a proteger con clavo de acero cada 725 mm. Fijar el angular 30x30x0,6 mm al forjado con taco 6x60 mm cada 300 mm.

Fijar el perfi l'angular inferior 30x30x0,6 mm sobre las tiras de paneles Tecbor® y estos sobre las omegas y al angular anclado al forjado mediante tornillo autorroscante cada 250 mm. Aplicar Pasta de juntas Tecbor® en las cabezas de los tornillos y en la junta entre placas.

TECBOR® PLACA CORTAFUEGO RF DE ÓXIDO DE MAGNESIO PARA DUCTOS METÁLICOS DE VENTILACIÓN

Resistentes al fuego 2 horas, autoportantes, configuración horizontal y vertica.

Ensayado bajo la norma UNE EN 1366-1. Ensayos de resistencia al fuego de instalaciones de servicios. Parte 1. Conductos. Clasificación de acuerdo a la UNE EN 13501-3: EI-120 (ve, ho io) S (Tipo A y B configuración horizontal y vertical). Ensayado bajo la norma UNE EN 1366-8. Ensayos de resistencia al fuego de instalaciones de servicios. Parte 8. Conductos para extracción de humos (multi sector) clasificación de acuerdo a la UNE EN 13501-4: EI-120 S 1500 (Tipo C).

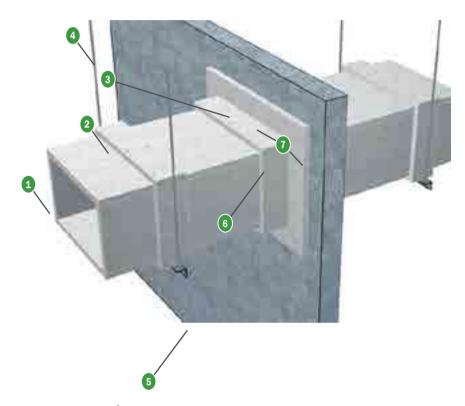
Los requisitos normativos exigen que se mantenga la sectorización de los elementos compartimentadores cuando son atravesados por las instalaciones, como tuberías o conductos de ventilación y extracción. El Código Técnico de la Edificación dice en su Documento Básico Seguridad en Caso de Incendio SI 1, Propagación Interior, Apartado 3, Punto 3:

La resistencia al fuego requerida a los elementos de compartimentación de incendios se debe mantener en los puntos en los que dichos elementos son atravesados por materiales de las instalaciones, tales como cables tuberías, conducciones, conductos de ventilación, etc. Para ello puede optarse por una de las siguientes alternativas:

a) Disponer un elemento que, en caso de incendio, obture automáticamente la sección de paso y garantice en dicho punto una resistencia al fuego al menos igual a la del elemento atravesado, por ejemplo, una compuerta cortafuegos automática El t (io) siendo t el tiempo de resistencia al fuego requerida al elemento de compartimentación atravesado, o un dispositivo intumescente de obturación.

b) Elementos pasantes que aporten una resistencia al menos igual a la del elemento atravesado, por ejemplo, conductos de ventilación El t (io) siendo t el tiempo de resistencia al fuego requerida al elemento de compartimentación atravesado.

Del párrafo anterior se sigue que los conductos resistentes al fuego que atraviesen sectores de incendios deben tener la sectorización para fuego desde su interior y desde el exterior a él.EL RSCIEI describe en su anexo II Artículo 5.7


"Los sistemas que incluyen conductos, tanto verticales como horizontales, que atraviesen elementos de compartimentación y cuya función no permita el uso de compuertas (extracción de humos, ventilación de vías de evacuación, etc.), deben ser resistentes al fuego o estar adecuadamente protegidos en todo

su recorrido con el mismo grado de resistencia al fuego que los elementos atravesados, y ensayados conforme a las normas UNE-EN aplicables".

Las Normas UNE EN aplicables, tal y como aparecen en el anejo DB SI G del CTE son:

- UNE EN 1366 Parte 1 para conductos de ventilación.
- UNE EN 1366 Parte 8 para conductos de extracción multisector

CONDUCTO DE VENTILACIÓN UNE EN 1366-1 Y UNE EN 1366-8 TECBOR® 30 TIPO A, B Y C - EI-120

FNSAYO

NormaUNE EN 1366-1 y UNE EN 1366-8 LaboratorioTECNALIA y APPLUS. N° Ensayot 4_07739, 1 4_08681, 14_07738, 14/8785-1293 y 14/8785-1237.

SOLUCIÓN

- 1 Paneles Tecbor®30 mm.
- Tapeta cubre juntas Tecbor®30 mm.
- 3 Anillo perimetral Tecbor® 30 mm.
- Varilla roscada.
- 5 Angular de soporte 50x50x5 mm.
- 6 Tornillo rosca madera 5x60 mm.
- 7 Anclajes metálicos 6x80 mm.
- 8 Lana de roca 50 mm de espesor y 145 kg/m
- 9 Adhesivo Tecsel®

DESCRIPCIÓN DE MONTAJE

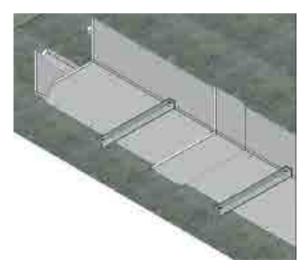
Composición conducto:

Conducto formado por paneles Tecbor [®] de 30 mm de espesor.

Fijaciones entre tramos:

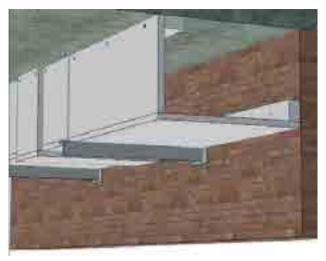
Longitudinalmente, I os paneless e unen m ediante adhesivo Tecsel®

Transversalmente, los tramos de conductos e unen mediante tapajuntasperimetralesformado por paneles Tecbor de 30 mm de espesor y 250 mm de anchura.

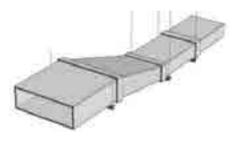

Las tapajuntasse fijan al tramo mediante 2 filas de tornillería de rosca madera de 5 x 60 mm, atornillados cada 250 mm en los lados largos y 200 mm en los cortos. Las filas se distancian entre ellas 160 mm.

Método de sopate del conducto:

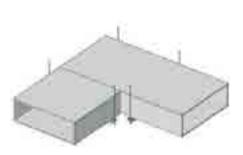
El conducto se soporta sobre una estructura auxiliar formada por varillas roscadas M16 y angulares en L de dimensiones 50 mm x 50 mm y 5 mm de espesor sobre los cuales descansa el conducto. La distancia máxima entre los cuelgues será de 1200 mm.

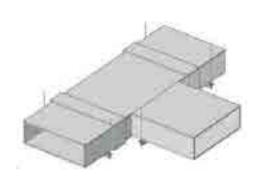

Sellado del punto de penetracióna través de la obra soporte. E I sellados e realiza con I os s iguientes elementos:

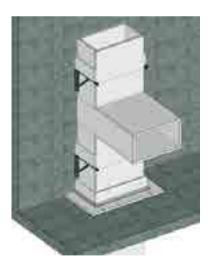
- · PanelesTecbor® de 30 mm de espesø.
- · Lana de roca de 50 mm de espesor y 145 Kg/m³ de densidad



1. Conducto horizontal 3 caras.


2. Conducto horizontal 2 caras.


3. Cambios de sección.


4. Desniveles.

5. Codos.

6. Bifurcaciones.

7. Anclaje vertical y empalme horizontal.

8. Conductovertical 3 caras

9. Conductovertical 2 caras

DIVISIONES CORTAFUEGO PARA COMPARTIMENTACIÓN DE EDIFICIOS

TECBOR PANELES RF DE ÓXIDO DE MAGNESIO

DESCRIPCIÓN

Los Paneles Tecbor® ofrecen un amplio abanico de soluciones constructivas en protección pasiva contra incendios para construcción e industria.

Disponible en diferentes espesores: 5, 10, 12, 15, 20, 23, 24, 25, 30 y 40 mm.

LISTADO DE SOLUCIONES

- · Protección de estructura de acero.
- · Conductos de ventilación.
- · Particiones.
- · Muros cortina.
- · Falsos techos.
- Túneles.

Los Paneles Tecbor® poseen certificado de marcado CE. Todos los ensayos realizados, se han llevado a cabo en laboratorios acreditados bajo normativa EN o similar, de acuerdo a las especificaciones de la guía DITE 018-4 aprobado por la EOTA. Los Paneles Tecbor® no contienen sustancias peligrosas de acuerdo a la Base de datos de la Comisión DS041/051. mercor tecresa®, además de ofrecer un amplio rango de soluciones constructivas, cuenta con un departamento técnico que desarrolla continuamente nuevas soluciones.

SEGURIDAD Y SALUD

En el manejo de los Paneles Tecbor® se deben tener en cuenta las siguientes consideraciones:

- · Se recomienda la protección de las manos con guantes de seguridad.
- · Respetar las medidas de seguridad y salud habituales.

Para más información consultar la ficha de seguridad del producto

ACABADOS

Los Paneles Tecbor® se presentan en dos formatos con diferentes acabados:

- Borde Recto: este acabado es idóneo para soluciones constructivas donde se requiere un encuentro entre los paneles a 90°, como es el caso de conductos túneles, encuentros medianerías, etc.
- Borde Afinado: es una placa exclusiva, que al tener sus dos bordes largos afinados ofrece un magnífico acabado en soluciones como falsos techos, tabiques, trasdosados, etc.

El borde afinado presenta una serie de ventajas:

- Acabado estético: mediante el borde aifnado se ocultan las juntas de encuentro, dando un aspecto estético idóneo para falsos techos, tabiques, trasdosados, etc.
- Mayor resistencia a fisuras: mediante la colocación de banda tapa juntas, se reduce el riesgo de fisuras.
- Reducción trabajabilidad: mayor rapidez en la realización

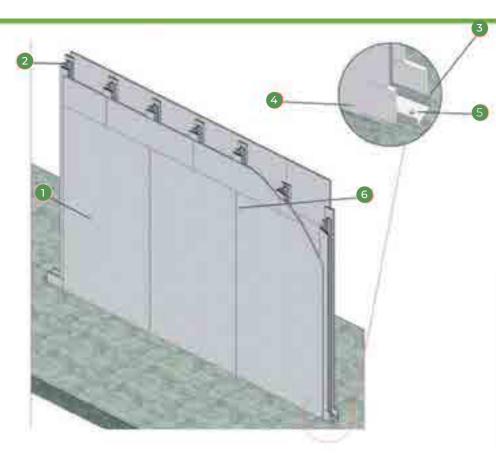
CARACTERÍSTICAS Y ESPECIFICACIONES TÉCNICAS			
ESPECIFICACIONES	TECBOR®	NORMATIVA	
Composición	Óxido de magnesio y otros aditivos	-	
Clasificación al fuego	No combustible Euroclase A1	UNE - EN 13501- 1:2002	
Densidad Seca (40°C)	900 kg/m ³ ±10%	UNE - EN 12467	
Densidad (23°C y 50% HR)	925 kg/m³	UNE - EN 12467	
Conductividad térmica	0,31 W/mk	UNE - EN 12664	
Alcalinidad pH	8-10	UNE - EN 13468	
Capacidad de absorción de agua	4,5 kg/m ²	EN 1609	
Permeabilidad al vapor de agua	3 x 10 ⁻⁹ (Kg/m ² sPa)	UNE - EN ISO 12572	
Tolerancia en longitud	± 5 mm	UNE - EN 12467	
Tolerancia en ancho	± 3 mm	UNE - EN 12467	
Expansión térmica (20-100°C)	3	UNE - EN ISO 10.545-8/97	
Tolerancia al espesor	+2 mm -1 mm	UNE - EN 12467	
Rectitud de los bordes	Nivel I - 0,1%	UNE - EN 12467	
Contenido materia orgánica	3,3%	UNE 103 204/93	
Resistencia causada por el agua	R _L < 0,75	UNE - EN 12467	
Módulo de elasticidad (MPa)	475 MPa	UNE - EN 12089 UNE -EN 310	
Resistencia a la flexión MOR (MPa)	4,74 MPa	EN- 12467	
Resistencia a la tracción perpendicular a la fibra (MPa)	1,47 MPa	EN - 1607	
Resistencia a compresión (MPa)	9,61 MPa	EN - 826	
Estabilidad dimensional	≤ 0,25%	UNE - EN 326-1	
Resistencia a la tracción paralela a las fibras (MPa)	0,99 MPa	EN 1608	
Proliferación microbiana	No	EN 13403	
Vida útil	25 años Z (uso interior)	ETA 18/1017	

del acabado.

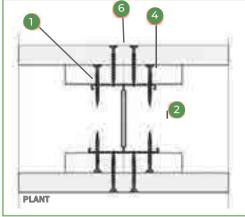
ALMACENAJE Y MANIPULACIÓN

Almacenar las placas sobre superficies planas manteniéndolas a cubierto y resguardadas de la Iluvia. Cuando las placas sean transportadas por carretillas elevadoras, estas deberán llevar las uñas abiertas al máximo.

ESPESOR mm	DIMENSIONESN	º PANELES/PALET
TECBOR® A		
5	1220 x 2300	84
10	1220 x 2300	42
12	1220 x 2300	35
15	1220 x 2300	40
TECBOR® B		
20	1220 x 2300	30
TECBOR®		
23	1220 x 2300	26
24	1220 x 2300	25
25	1220 x 2300	24
30	1220 x 2300	20
TECBOR® B		
40	1220 x 2300	15



TABIQUE RF RESISTENTE AL FUEGO F-60 Y F-120


Las paredes no portantes que realizan funciones de separación entre sectores de incendio, deben tener una resistencia al fuego como se indica en la norma NCh 935/1.Of 97. "Prevencion de incendio en edificios – Ensayo de resistencia al fuego – Parte 1: Elementos de construcción en general". Esta norma entrega la resistencia al fuego y la clasificación de cada elemento ensayado (F)

La RF se define en la norma NCh 935 como: "Cualidad de un elemento de construcción de soportar las condiciones de un incendio estándar, sin deterioro importante de su capacidad funcional. Esta cualidad se mide por el tiempo en minutos durante el cual el elemento conserva la estabilidad mecánica, la estanquidad en las llamas, el aislamiento térmico y la no emisión de gases inflamables".

- 1. PANELES TECBOR 12mm
- 2. DOBLE MONTANTE EN "H" DE 70X36X0.6mm
- 3. CANAL DE 73X30X0.5mm
- 4. TORNILLO AUTORROSCANTE DE 3.5X35mm
- 5. TACO METÁLICO M6
- 6. PASTA DE JUNTAS TECBOR

La OGUC acepta el uso de productos ensayados en el extranjero, sin necesidad de volver a ensayarlos en Chile (bajo norma chilena) siempre y cuando exista un estudio de asimilación que así lo valide.DICTUC según informe N° 1505024 validó el ensayo UNE EN 1364-1, N° 051497-1 que certifica un F-60 para el montaje de tabique Tecbor® sin lana F-60.

SUS VENTAJAS:

del mercado

con agua

Protección contra fuego

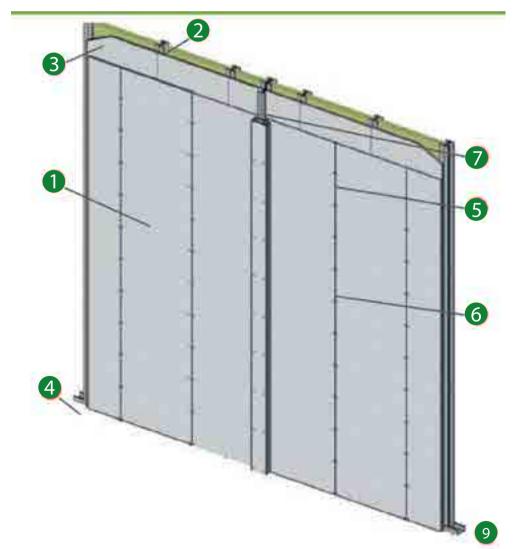
Según norma Nch935/1 Certificados OGUC Título IV Capítulo 3

Tecbor® Tabique F-60

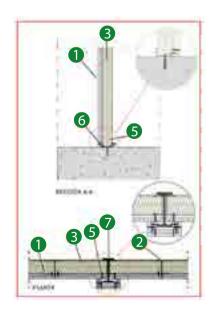
No requiere relleno de lana mineral

MONTAJE DEL TABIQUE

Fijar los canales de 73x30x0,5 mm mediante taco metálico M6 cada 250-300 mm. Completar la estructura metálica con montantes dobles de 70x36x0,6 mm colocados en "H" y separados 610 mm entre ejes.


A continuación fijar los paneles Tecbor® de 12 mm a ambos lados con tornillos autorroscantes de 3,5x35 mm cada 200-250 mm.

Para finalizar cubrir las juntas entre los paneles y las cabezas de los tornillos con pasta de juntas Tecbor®.Los montantes irán cubiertos con fajas de panel Tecbor®, sobre las que se atornillaran los paneles.


Video de las placas Tecbor® en usohttps://www.youtube.com/watch?v=jPGefO4aXY0

TRASDOSADO RF RESISTENTE AL FUEGO F-120

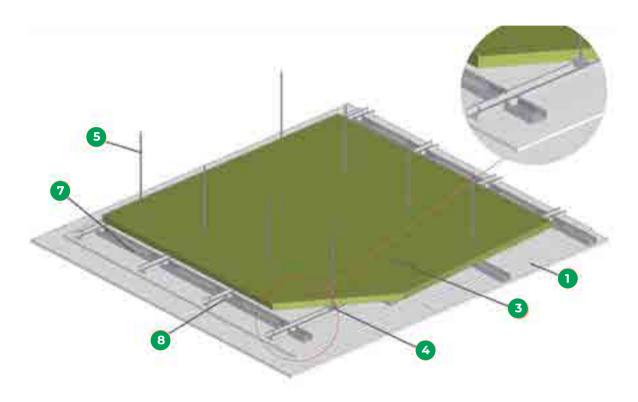
- 1. PANELES TECBOR 12mm
- 2. DOBLE MONTANTE EN "H" DE 70X36X0.6mm
- 3. LANA DE ROCADE 80mm Y 40KG/M3
- 4. CANAL DE 73X30X0.5mm
- 5. TORNILLO AUTORROSCANTE DE 3.5X35mm
- 6. PASTA DE JUNTAS TECBOR
- 7. PERFIL METÁLICO IPN 14. ANGULAR 30X30X0.6mm
- 8. ANGULAR 30X30X0.6mm
- 9. TACO METÁLICO M6
- 10. OMEGA
- 11. CHAPAGRECADA (OPCIONAL)

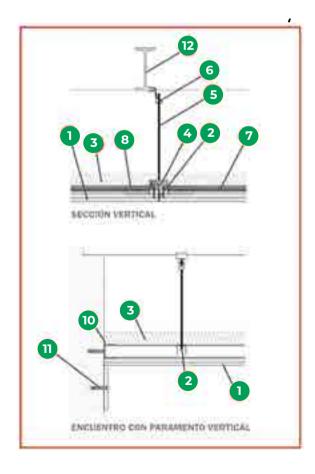
Las paredes no portantes que realizan funciones de separación entre sectores de incendio, deben tener una resistencia al fuego como se indica en la norma NCh 935/1.Of 97. "Prevencion de incendio en edificios – Ensayo de resistencia al fuego – Parte 1: Elementos de construcción en general". Esta norma entrega la resistencia al fuego y la clasificación de cada elemento ensayado (F)

La RF se define en la norma NCh 935 como: "Cualidad de un elemento de construcción de soportar las condiciones de un incendio estándar, sin deterioro importante de su capacidad funcional. Esta cualidad se mide por el tiempo en minutos durante el cual el elemento conserva la estabilidad mecánica, la estanquidad en las llamas, el aislamiento térmico y la no emisión de gases inflamables"

La OGUC acepta el uso de productos ensayados en el extranjero, sin necesidad de volver a ensayarlos en Chile (bajo norma chilena) siempre y cuando exista un estudio de asimilación que así lo valide.

SUS VENTAJAS:


Montaje del trasdosado independiente


- 1. Fijar los canales 73x30x0,5 mm y ensamblar los montantes 70x36x0,6 mm cada 610 mm.
- 2. Rellenar el entramado con paneles de lana de roca de 60 mm (30+30 mm) y 100 Kg/m3.
- 3. Fijar las 2 capas de paneles Tecbor® de 15 mm mediante tornillos autorroscantes de 3,5x35 mm a intervalos de 200-250 mm y contrapeando las capas.
- 4. Aplicar Pasta de juntas Tecbor® en las uniones entre paneles y en las cabezas de los tornillos.

-A.3

CIELOS FALSOS RF RESISTENTES AL FUEGO F-60 Y F-120

- Paneles Techor* A 12 mm
- 2 Tornillo autorroscante de 3,5x45 mm.
- 3 Lana de roca de 40 mm y 40 Kg/m³.
- 4 Horquilla para TC 60/27.
- 5 Varilla roscada M6.
- 6 Clip tipo "Sinard".
- 7 TC 60/27
- 8 Empaime para TC 60/27.
- 9 Pasta de juntas Techor*
- 10 Canal de 48x30x0,5 mm.
- 11 Taco de 10x100 mm.
- 12 Perfil metálico

Los falsos techos cortafuegos se utilizan fundamentalmente en dos situaciones concretas: La primera sería para independizar verticalmente distintos sectores de incendio; esta medida sirve para acotar el fuego en el lugar de inicio y evitar que éste se propague entre las distintas plantas.

Esta solución es de gran utilidad en edificaciones de gran altura, pues una sectorización incompleta produciría un gran avance del fuego y generaría muchos problemas durante la evacuación.

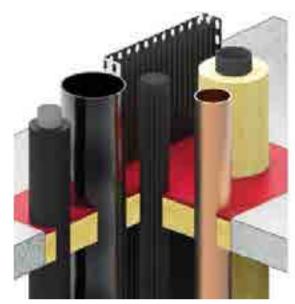
La segunda utilización más habitual es la de proteger distintos elementos que encontramos por encima del techo, es decir, proteger por ejemplo instalaciones, estructuras, forjados, etc. En función de nuestras necesidades utilizaremos una u otra aplicación. Nuestras soluciones han sido ensayadas cuando el fuego ataca desde abajo

La OGUC acepta el uso de productos ensayados en el extranjero, sin necesidad de volver a ensayarlos en Chile (bajo norma chilena) siempre y cuando exista un estudio de asimilación que así lo valide.

DICTUC según informe Nº 1505024 validó el ensayo UNE EN 1364-1, Nº 20331-1 que certifica un F-60 para el montaje de TECBOR® cielo falso OGUC F-60

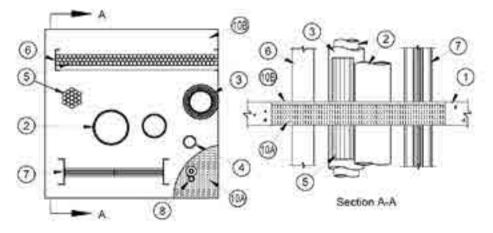
Sus ventajas:

Montaje del cielo falso


- 1. Fijar canales de 48x30x0,5 mm mediante tacos de 10x100 mm a una distancia de 500 mm aproximadamente en todo el perímetro del techo.
- 2. A continuación colocar los perfiles tipo TC 60/27 a una distancia de 610 mm entre ejes y transversalmente cruzar los perfiles mediante una conexión-empalme para TC 60/27 formando retículas de 610x610n mm. Mediante las horquillas, varilla M6 y grapa de fijación, unir la estructura al soporte sobre el que se cuelga el techo.
- 3. Terminada la estructura metálica, fijar la primera capa de paneles Tecbor® A 12 mm alternando con la colocación de la lana de roca de 40 mm y 40 Kg/m3 por encima de la estructura metálica.
- 4. Seguidamente instalar la segunda capa de paneles mediante tornillos autorroscantes de 3,5x45 mm, esta segunda capa irá contrapeada con respecto a la primera.

- 5. Rematar perimetralmente con un zócalo de 150 mm de ancho de Tecbor® A 12 mm.
- 6. La distancia entre tornillos será de 250-300 mm aproximadamente y se taparán las cabezas de los tornillos y las uniones entre paneles con Pasta de juntas Tecbor®.

SHAFTS RF RESISTENTE AL FUEGO


Descripción:

En caso de incendios los espacios menos visibles como shaft, cámaras o cielo falsos entre otros. deben tener continuidad de resistencia al fuego con los espacios ocupables, de igual manera la resistencia al fuego debe mantenerse en los puntos de pasadas o penetraciones de mencionados espacios.

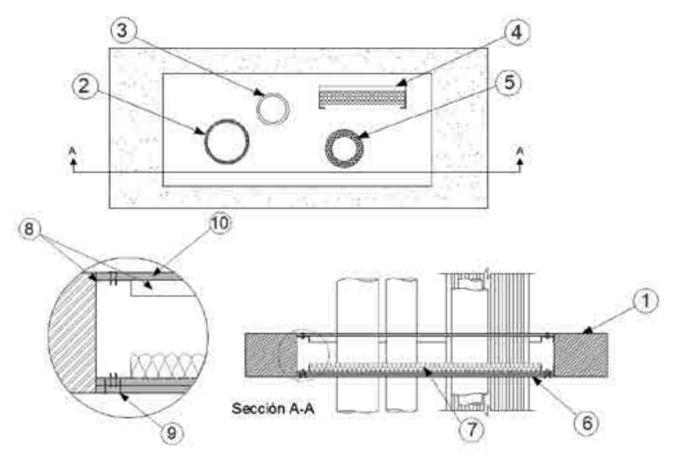
Para este requerimiento podemos ofrecerte soluciones con materiales cortafuego de alta calidad.

SOLUCION SELLADOR STI SPEACSEAL

Para un ancho hasta 813 mm y clasificación de 2 horas

- 1. Conjunto de piso 10.SISTEMA CORTAFUEGOS:
- 2. Penetrantes Metálicos Uno o más tubos, conductos
- o tubos metálicos que se instalarán dentro de la abertura.
- 3. Aislamiento de tuberías
- 4. Penetrantes no metálicos

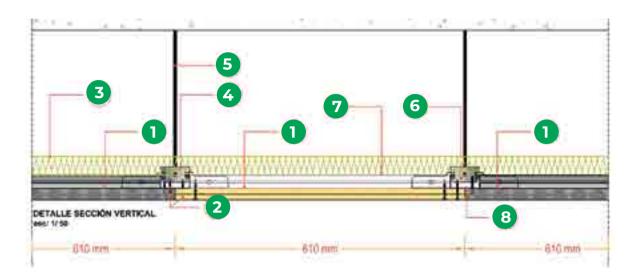
- 5. cables apretados de 4 pulg
- 6. Bandeja portacables
- 7. Gabinete de aluminio
- 8.Juego de líneas de aire
- acondicionado
- 9. Conducto de acero: (no se muestra)
- 10 A. Material de embalaje: lana mineral
- 10 B. Materiales de relleno, vanos o cavidades



Sellador SSS Serie SpecSeal Ó Sellador SpecSeal LCI Sealant

SOLUCION PLACA RF TECBOR

- 1. Conjunto de piso
- 2. Penetrantes Metálicos Uno o más tubos, conductos o tubos metálicos que se instalarán dentro de la abertura.
- 5. Aislamiento de tuberías
- 3. Penetrantes no metálicos
- 4. Bandeja portacables
- 6. Doble placa Tecbor A 12mm
- 8. TC 60/27.
- 9. Tornillo autorroscante de 3,5x45 mm.
- 7. Lana de roca 40mm. 40 kg/m3
- 10. Placa para protección de lana de roca.
- 11. Pasta de Juntas Tecbor Sacos 20 Kg. (no se muestra): en cabezas de los tornillos y uniones



TAPAS DE REGISTRO RF RESISTENTES AL FUEGO

- Paneles Tecbor* 12 mm.
- Tornillo autoroscante de 3,5 x 45 mm
- Lana de roca de 40 mm y 40 kg/m³
- 4 Horquilla para tc 60/27
- 5 Varilla roscada M6
- 6 TC 60/27
- 7 Empalme para TC 60/27
- 8 Pasta de juntas Tecbor*.

Las tapas de registro, se utilizan tanto en tabiquería como en cielo falso. Las tapas de registro Mercor Tecresa, son realizadas en obra con paneles Tecbor®, de fácil instalación y bajo costo, con una terminación casi invisible y muy estética.

Sus ventajas:

Uso en Interiores

contra fuego

No es necesario material adicional

TECBARRIER® Muros Cortafuegos

FC STEEL PLACA RF DE FIBRO CEMENTO

Descripción:

FC-Steel Board es un panel compuesto de fibra reforzada y cemento adherido a láminas de acero perforadas en ambas superficies exteriores.

Clasificado como "no combustible" según BS 476: Parte 4: 1970 y según la cláusula 10 de EN 13501-1: 2002.FC-Steel Board es

altamente resistente a la humedad y a los impactos y ha sido desarrollado a través de pruebas rigurosas para usar en aplicaciones de barreras, techos y puertas con una gama completa de especificaciones.

FC-Steel Board combina ligereza, fuerza, impacto, resistencia a explosiones y durabilidad con fuego excepcional resistencia. Además, también puede soportar los efectos de las mangueras de los bomberos. Los sistemas FC-Steel Board han desempeñado un papel eficaz en la prestación de muchos servicios industriales y comerciales. Aplicaciones Desde terminales aeroportuarias hasta subestaciones, instalaciones farmacéuticas y petroquímicas, hasta centrales eléctricas, asesorando, diseñando barreras contra incendios con los más altos estándares.

Carcaterísticas:

- · Resistente al fuego durante cuatro horas.
- · Resistente al impacto
- · Resistente a la humedad
- · Ligero no se requieren fundaciones
- · Ahorro de espacio, con excelente resistencia e integridad
- · Estructura desmontable/remontable
- · Libre de mantenimiento
- · Adecuado para ubicaciones internas y externas
- · Puede ser prefabricado fuera del sitio
- Diseñado específicamente para cumplir con los requisitos individuales.
- Resistencia de vibracion

Fuerza de flexión: 190MPa(N/mm2) (promedio)Resistencia a la flexión: 84MPa(N/mm2) (promedio)Módulo de flexión:72000MPa(N/mm2) (promedio)Resistencia al impacto:(4,5 kg desde 1 m) 45J Resistencia al impacto: 2700J

Descripción:	Un panel compuesto duradero de fibrocemento (100 % sin asbesto) unido mecánicamente para perforar láminas de acero en ambas superficies.		
Tamaño:	2400 mm x 1200 mm (±2 mm). 9,5 mm de espesor (+0,5 mm)		
Peso Nominal:	25 kilos / m2		
Humedad:	*6% Movimiento ambiente a saturado		
Acústico	* ≤ 0,15% Índice de reducción de sonido 32dB		
Fuego	No combustibilidad (GB8624 e ISO1182) *No combustible		
	Clasificación del Reglamento de Construcción *Clase 0		
	Resistente al fuego *240 minutos		
	Resistencia a explosión 2 barras		
Hojas de acabados:	*Acero dulce galvanizado *Acero inoxidable		

TECBOR PLACA RF DE ÓXIDO DE MAGNESIO

Descripción:

Los Paneles Tecbor® ofrecen un amplio abanico de soluciones constructivas en protección pasiva contra incendios para construcción e industria.

Disponible en diferentes espesores: 5, 10, 12, 15, 20, 23, 24, 25, 30 y 40 mm.

Propiedades:

Los Paneles Tecbor® poseen certificado de marcado CE. Todos los ensayos realizados, se han llevado a cabo en laboratorios acreditados bajo normativa EN o similar, de

acuerdo a las especificaciones de la guía DITE 018-4 aprobado por la EOTA.

Los Paneles Tecbor® no contienen sustancias peligrosas de acuerdo a la Base de datos de la Comisión DS041/051. mercor tecresa®, además de ofrecer un amplio rango de soluciones constructivas, cuenta con un departamento técnico que desarrolla continuamente nuevas soluciones.

Listado de soluciones:

- Protección de estructura de acero.
- · Conductos de ventilación.
- · Particiones.
- · Muros cortina.
- · Falsos techos.
- Túneles

Seguridad y salud:

En el manejo de los Paneles Tecbor® se deben tener en cuenta las siguientes consideraciones:

- · Se recomienda la protección de las manos con guantes de seguridad.
- Respetar las medidas de seguridad y salud habituales.

Para más información consultar la ficha de seguridad del producto

CARACTERÍSTICAS Y ESPECIFICACIONES TÉCNICAS

ESPECIFICACIONES	TECBOR	NORMATIVA
Composición	Óxido de magnesio y otros aditivos	-
Clasificación al fuego	No combustible Euroclase A1	UNE - EN 13501- 1:2002
Densidad Seca (40°C)	$900 \text{ kg/m}^3 \pm 10\%$	UNE - EN 12467
Densidad (23°C y 50% HR)	925 kg/m³	UNE - EN 12467
Conductividad térmica	0,31 W/mk	UNE - EN 12664
Alcalinidad pH	8-10	UNE - EN 13468
Capacidad de absorción de agua	4,5 kg/m ²	EN 1609
Permeabilidad al vapor de agua	3 x 10 ⁻⁹ (Kg/m ² sPa)	UNE - EN ISO 12572
Tolerancia en longitud	± 5 mm	UNE - EN 12467
Tolerancia en ancho	± 3 mm	UNE - EN 12467
Expansión térmica (20-100°C)	3	UNE - EN ISO 10.545-8/97
Tolerancia al espesor	+2 mm -1 mm	UNE - EN 12467
Rectitud de los bordes	Nivel I - 0,1%	UNE - EN 12467
Contenido materia orgánica	3,3%	UNE 103 204/93
Resistencia causada por el agua	R _L < 0,75	UNE - EN 12467
Módulo de elasticidad (MPa)	475 MPa	UNE - EN 12089 UNE -EN 310
Resistencia a la flexión MOR (MPa)	4,74 MPa	EN- 12467
Resistencia a la tracción perpendicular a la fibra (MPa)	1,47 MPa	EN - 1607
Resistencia a compresión (MPa)	9,61 MPa	EN - 826
Estabilidad dimensional	≤ 0,25%	UNE - EN 326-1
Resistencia a la tracción paralela a las fibras (MPa)	0,99 MPa	EN 1608
Proliferación microbiana	No	EN 13403
	(uso interior)	

Acabados:

Los Paneles Tecbor® se presentan en dos formatos con diferentes acabados:

- Borde Recto: este acabado es idóneo para soluciones constructivas donde se requiere un encuentro entre los paneles a 90°, como es el caso de conductos túneles, encuentros medianerías, etc.
- Borde Afinado: es una placa exclusiva, que al tener sus dos bordes largos afinados ofrece un magnífico acabado en soluciones como falsos techos, tabiques, trasdosados, etc.El borde afinado presenta una serie de ventajas:
- Acabado estético: mediante el borde aifnado se ocultan las juntas de encuentro, dando un aspecto estético idóneo para falsos techos, tabiques, trasdosados, etc.
- Mayor resistencia a fisuras: mediante la colocación de banda tapa juntas, se reduce el riesgo de fisuras.
- Reducción trabajabilidad: mayor rapidez en la realización del acabado

Almacenaje y manipulación:

Almacenar las placas sobre superficies planas manteniéndolas a cubierto y resguardadas de la lluvia. Cuando las placas sean transportadas por carretillas elevadoras, estas deberán llevar las uñas abiertas al máximo.

ESPESOR mm	DIMENSIONESN	• PANELES/PALET
TECBOR® A		
5	1220 x 2300	84
10	1220 x 2300	42
12	1220 x 2300	35
15	1220 x 2300	40
TECBOR® B		
20	1220 x 2300	30
TECBOR®		
23	1220 x 2300	26
24	1220 x 2300	25
25	1220 x 2300	24
30	1220 x 2300	20
TECBOR® B		
40	1220 x 2300	15

MURO CORTAFUEGO Y/O EXPLOSIÓN PARA TRANSFORMADORES

Especificaciones:

- · Muro Cortafuegos adaptable, de bajo coste y de instalación rápida.
- · Alturas de hasta 15 m con cargas de viento de 250 Km/h.
- · Diseño modular, listo para instalar, conjuntos prefabricados.
- · Cumple con NFPA 850, DS 109 y normas contra incendios locales e internacionales.
- · Cumple con los requisitos de separación para equipos peligrosos.

Transformadores de potencia:

TecBarrier es una innovadora barrera contra incendios diseñada específicamente para transformadores al aire libre con paneles RF y una estructura metálica de soporte. Esta solución, caracterizada por su ligereza, facilidad de instalación y remoción, garantiza la protección integral de personas y propiedades ante los efectos potencialmente devastadores de un incendio en un transformador.

Fuego, explosión y sismo:

Resistencia al fuego certificada hasta 240 minutos (ataque del fuego por ambos lados), cumple con estándares NFPA 850, norma DS 109 SEC, norma OGUC 4.3.14, resistencia al impacto hasta 2700 J. Reducción de ruido según norma ISO.

Diseño escalable:

La versatilidad del sistema modular de TecBarrier brinda una instalación rápida y sencilla, permitiendo su desmontaje y montaje posterior en otro transformador o Subestación. TecBarrier soporta velocidades de viento de 250 km/h (ráfagas de 3 segundos) y es resistente a los sismos. Su diseño permite alcanzar alturas de 15 m sin limitaciones en las longitudes disponibles. Además, se pueden definir diferentes tipos de cimentación (menos complejos que los de concreto hormigonado) lo que lo convierte en la elección ideal en áreas donde se deben minimizar las perturbaciones subterráneas y

los espacios de trabajo son reducidos.

Tecbarrier para subestaciones eléctricas resilientes

TecBarrier se instala en una amplia gama de ubicaciones y aplicaciones para garantizar la seguridad y el rendimiento de los activos eléctricos y la infraestructura. Ya sea para reducir el tiempo de inactividad de los transformadores, mejorar la seguridad y la resiliencia de las subestaciones eléctricas, asegurar un suministro eléctrico seguro y confiable en puntos de la red de distribución, o proteger los activos eléctricos en edificios comerciales e industriales, como fábricas, almacenes y oficinas, TecBarrier es la Barrera Modular Cortafuego más eficiente.

MURO CORTAFUEGO Y/O EXPLOSIÓN PARA PLANTAS DE ALMACENAMIENTO DE HIDROGENO

Beneficios:

- Resistencia al fuego certificada hasta 240 minutos.
- Ofrece cumplimiento ante requerimientos de normativa.
- TecBarrier se puede instalar en una variedad de ubicaciones y aplicaciones para garantizar la seguridad y operatividad.
- Proporciona diseño y fabricación de separaciones personalizadas para usar en nuevos diseños o instalaciones preexistentes
- Reduce el tiempo de inactividad
- Excelente opción para, gas, interruptores y separaciones de materiales peligrosos.

Plantas de almacenamiento de hidrogeno:

El almacenamiento de combustibles y materiales peligrosos en la superficie. Crea vulnerabilidad a explosiones, accidentes automovilísticos, incendios y emisiones al aire. y muchos otros peligros. Es por ellos que no cabe duda de que el uso de barreras contra incendios en este sector de almacenamiento brinda una solución eficiente para garantizar que la infraestructura crítica pueda continuar ininterrumpidamente frente a los peligros de incendio y explosión.

Aspectos destacados:

El almacenamiento de hidrogeno requiere protección desde el campo hasta la BOMBA en caso de explosiones de incendio y eventos de incendio prolongado de combustible. Hay que destacar que el hidrógeno se está considerando cada vez más relevante como opción de energía limpia, ya que el único subproducto después de quemar hidrógeno es el agua. Las tapas de los extremos y los cilindros que almacenan el gas necesitan protección contra los mismos peligros que enfrentan los parques de tanques. Los vehículos de hidrógeno se han asociado con un importante distribuidor regular de gas para agregar capacidad de llenado de hidrógeno en una antigua estación de servicio común; esto nos muestra un amplio beneficio para adquirir combustible, pero permitiendo también extender el peligro al terreno público.

Es por ello que las barreras contra incendios se vuelven fundamentales, una opción que permite brindar protección ante la propagación de incendios y explosiones, convirtiéndose así en una solución perfecta para evitar daños de infraestructura y de carácter humano.

MURO CORTAFUEGO Y/O EXPLOSIÓN PARA PLANTAS DE ALMACENAMIENTO DE BATERÍAS

Beneficios:

Cumple y supera el cumplimiento de NFPA 855.

Requisitos para la separación de baterías y protección al fuego.

Los paneles y módulos se instalan fácilmente entre unidades para proteger a personas, equipos e instalaciones mientras apoya la contención del sitio, resistencia y cumplimiento para la protección contra incendios.

Proporciona diseño y fabricación de separaciones personalizadas para usar en nuevos diseños o instalaciones preexistentes

Brinda solución para una construcción existente o nueva.

Excelente para baterías, gas, interruptores y separaciones de materiales peligrosos.

Plantas de almacenamiento de baterias:

Las barreras o muros cortafuego para separación de batería, están clasificados para contener una falla de la batería, descartando la creación de un efecto en cadena. TecBarrier esta diseñado para reducir los requisitos de espacio entre unidades de 10 pie a 3 pie y al mismo tiempo cumplir con todos los seguros y el cumplimiento de normativas. Las barreras contra incendios separadoras de baterías sirven como escudos protectores para defender grandes sistemas de almacenamiento de arco eléctrico, calor, fuego y explosiones.

Beneficios:

- · Separación y cumplimiento de baterías de bajo costo y sin mantenimiento
- · Cumplimiento de códigos y normativa.
- · Ofrece cumplir con requerimientos del seguro y reducir costos.
- Menor espacio requerido entre unidades de 10 pie a 3 pie.
- · Protección pasiva contra incendios respetuosa con el medio ambiente.

Aplicaciones:

- · Instalaciones BESS
- · Contención de arco eléctrico
- · Separación y protección de baterías.
- · Transporte y almacenamiento de baterías.
- · Solución de continuidad del negocio.

MURO CORTAFUEGO Y/O EXPLOSIÓN PARA PLANTAS INDUSTRIALES

Especificaciones:

Diseñado para cumplir con las condiciones específicas de su sitio

2 a cuatro horas de estabilidad e integridad durante el incendio

Resistente a hidrocarburos y productos químicos

Solución independiente y sin mantenimiento

Proporciona cumplimiento con NFPA, municipal y normas y regulaciones de seguros.

Plantas industriales

Las barreras industriales contra incendios son una pieza fundamental para la integridad de activos en plantas industriales . Las compañías de seguros demandan para caso de incendio, barreras contra incendios y de esta manera lograr minimizar daños ypérdidas financieras por riesgos de incendio y explosión. TecBarrier realiza instalaciones de barreras contra incendios en plantas industriales de todo tipo, ofreciendo a sus clientes cumplir con las pautas de seguros, y minimizar las pérdidas potenciales de una falla crítica.

Beneficios:

- · Ahorrar espacio y minimizar requisitos de autorización
- · cumplir con los requisitos de seguro
- · Renegociar las tarifas de los seguros
- · Fortalecer la resistencia del sitio minimizar pérdidas y daños
- Permanecer operativo

Aplicaciones:

- · Protección de activos críticos y personas en instalaciones industriales
- · Reemplazar sistemas de rociadores y diluvios ambientalmente peligrosos
- · Almacenamiento de productos químicos
- · Suministro/generación de energía
- · Calentadores y tanques presurizados
- · Instalaciones de carga de camione

FC2 BARRERAS TEXTILES MÓVILES Y FIJAS CORTAFUEGO Y CORTAHUMO

BARRERA TEXTIL MÓVIL CORTA FUEGO F-120

La Barrera de fuego automática FC2 constituye un sistema mecánico integrado en la construcción que requiere poco espacio y permite controlar el movimiento del incendio de una forma "oculta". El sistema está formado por: una barrera textil ignífuga que únicamente se despliega en caso de emergencia, un cajón de acero galvanizado que alberga la barrera, un contrapeso en la parte inferior para dotar a la barrera de estabilidad, un motor, un módulo de control del motor y un cuadro que recibe las señales de incendio.

La Barrera de fuego automática FC2 es un sistema con seguridad positiva, es decir, desciende por gravedad a su posición activa y a velocidad controlada, al recibir una señal procedente del sistema de detección de incendios. La bajada se puede realizar en dos fases, con y sin tensión eléctrica. La barrera FC21 es un sistema con una clasificación E240 EW30 Clase 0 según norma EN 13501-4. La barrera FC21 es un sistema con una clasificación DHA (1000 °C 240 minutos) ASB1 y 3 conforme UNE 12101-1.

Ensayada conforme a UNE EN 1634 "Resistencia al fuego y control de humo".

Ensayada conforme a UNE EN 949 "Resistencia a impactos de un cuerpo blando y pesado".

Ensayada también conforme a normas UL y NFPA.

Sus partes:

GCP: Cuadro encargado de recibir la señal de incendio proveniente del sistema de detección y en consecuencia, activar la barrera. Permite conocer el estado del sistema así como realizar las labores de mantenimiento. Dispone de un sistema de baterías capaz de mantener las barreras y las electroválvulas en posición de reposo en caso de fallo en el suministro eléctrico.

- MCC: Módulo de control de motor. Ubicado junto al motor mantiene estable la barrera en su posición de reposo (retraída). Sincroniza la velocidad de ascenso de la barrera y limita la velocidad de descenso bajo la acción de la gravedad incluso con fallo de tensión.
- Cajón: Destinado a albergar en su interior la barrera cortafuegos está conformado en acero galvanizado de 1,5 mm de espesor. Dispone de distintas configuraciones y sistemas de soporte a fin de adaptarse a las condiciones arquitectónicas de la construcción.
- Guías laterales: Fabricadas en una pieza de acero galvanizado de 2 mm de espesor, fijan la barrera lateralmente manteniendo su función compartimentadora pese a la sobrepresión generada por el incendio.
- Perfil de cierre: Instalado en el extremo inferior del textil, aporta estabilidad al conjunto y forma el cierre del cajón en su posición de reposo.
- · Textil: Tejido realizado en fibra de vidrio. Cohesionado y tratado para soportar temperaturas de hasta 1000 °C.
- · Motor: Motor tubular con funcionamiento a 24 Vdc y operativo hasta una temperatura de 300 °C. Dotado de un sistema de engranajes que permite aplicar el toque necesario para el correcto funcionamiento del sistema.

Sus ventajas:

activos de planta

Características:	Barrera textil ignífuga que únicamente se despliega
	en caso
	de emergencia
	No combustible
	Ignífugo
	No tóxico, ni patógeno
	Resistente a hongos

	1
Aplicación en:	Edificios donde por motivos estéticos no es posible
	instalar
	una barrera fija.
	Centros comerciales.
	Edificios públicos.
	Garajes.
	Aeropuertos.
	Museos.
Propiedades:	Aislación Térmica, Hospitalario, Producto con com-
	ponentes
	inorgánicos, Protección Antibacteriana, Protección
	Ignífuga
Área de desempeño:	Público
	Inmobiliario
	Retail
	Residencial
	Comercial
Certificaciones:	EN, UNE

Otros componentes:

- · Centralización en sistema de pantalla táctil con representación visual de estado yalarmas.
- · Lacado RAL de los elementos metálicos del sistema.
- · Alarma acústica de obstrucciones en el plano de cierre.
- · Rearme manual del sistema.
- · Alerta por voz de barreras en descenso (opcional).
- · Indicador luminoso de barreras en descenso.
- · Descensos temporizados y/o en fases (opcional).
- · Pulsador temporizado de escape (opcional).
- · Contactos de integración con sistema de gestión central.
- · Finales de carrera

SISFIREPRO SELLADO DE AISLADORES SÍSMICOS

SISFIREPRO F-120 SYNIXTOR

MANTA Cerámica Cortafuego F-120 para Aisladores Sísmicos Los aisladores sísmicos, están diseñados para independizar horizontalmente a la estructura de los edificios del movimiento del suelo. Esto permite que ante un movimiento los aisladores se acomoden a la deformación provocada por este, reduciendo en un gran porcentaje el traspaso del movimiento a la estructura, previniendo daños estructurales y no estructurales, protegiendo la continuidad de operación y proporcionando confort a sus ocupantes.

Los aisladores sísmicos se usan principalmente en infraestructuras críticas como hospitales, data centers y salas de control, pero también en edificios de oficinas, residenciales y comerciales, e incluso en instalaciones industriales. Sin embargo, los aisladores sísmicos, elastoméricos o friccionales, son vulnerables a la acción del fuego, en particular cuando se superan temperaturas de 140 °C en el elastómero, PTFE, PE o PA.

Synixtor ha desarrollado dentro de sus soluciones, la protección pasiva contra el fuego mediante el sistema SISfirePro® F-120 para aisladores sísmicos.SISfirePro® F-120 para aisladores sísmicos alcanza una resistencia al fuego de 120 minutos (F-120) a una temperatura de 1.029 °C, de acuerdo con las curvas de temperatura de ASTM E119, ISO 834-1 y Norma Chilena NCh 935/1

El sistema SISfirePro® F-120 está compuesto de varios materiales, de los cuales uno de los principales es la fibra cerámica, con características de baja conductividad térmica, buena resistencia al choque térmico y bajo almacenamiento de calor; mantiene una alta resistencia a la tracción y también a la corrosión.

El conjunto de todos los elementos considerados en la fabricación de SISfirePro® F-120 otorga una resistencia al fuego a los aisladores sísmicos, para evitar que sean afectados por la temperatura producto de la conducción, difusión y/o radiacióndel calor que se produce en caso de incendio.

	Capa interior	Capa exterior
T Máxima de Operación	1260	1260
T. Media Operación	1050	1050
Color	Blanco	Blanco
Tipo de Material	Manta de Fibra Cerámica de Arcilla Gao-ling de alta calidad, alúmina de alta pureza y óxidos de sílice por proceso hilado o soplado, con punción de doble cara.	Tela de Fibra cerámica con hilo insertado de alambre de acero inoxidable 304 de 0.006"
Espesor Capas	60mm	0.23"
Composición Química	Al O3 % 45-47 Al O3 + SiO2 % 98.5 ZrO2 % -	Al2O3 % 47-49 Al2O3 + SiO2 % 99
Conductividad térmica (W/m.k.) 128Kg/m3	800 C 0.15 1000 C 0.17	8 00 C 0.15 1000 C 0.17
Contracción térmica (24hrs) 128Kg/m3	1150 C <3	1150 C <3

El sistema SISfirePro® F-120 tiene la capacidad de acomodar los desplazamientos del aislador ante un sismo sin presentar daños; permite la inspección periódica de los aisladores sísmicos, es libre de mantención y además es registrable.

	Características Técnicas
Rating	120 minutos
Largo/ancho	Diferentes medidas
Capacidad de deformación	> 40 cm
Características	 . Admite temperatura de hasta 1260°C · Ligero, para facilitar la instalación. · Baja conductividad térmica · No tóxico térmico · Registrable, permite la inspección de los aisladores
Aplicación en	Aisladores sísmicos
Áreas de desempeño	Hospitales Data Centers Retail Hotelera Edificios Públicos Edificios de Alto Tránsito Hospitalaria Estructuras Industriales

Formato

Las Mantas pueden ser unitarias o doble cara, de diferentes tamaños, dependiendo del tamaño del Aislador Sísmico y de los

Instalación

SISfirePro® F-120se puede montar de diferentes maneras según sean las condiciones de instalación de los aisladores sísmicos:

- 1. Envoltura: por la cara externa de los capiteles de hormigón que soportan el aislador sísmico.
- 2. Telescoping: alrededor del perímetro externo del elastómero.

ROXTEC SELLADO DE TRANSITO DE CABLES Y TUBERÍAS

SELLADOS PARA UN SOLO CABLE O TUBERÍA: ROXTEC RS SEAL

he Roxtec RS is a round entry seal consisting of two halves and an adaptable center with removable layers. Compression is inTtegrated in the seal. Allows installation around an existing cable or pipe.

Attachment by expansion in holes For one cable or pipe Sleeve accessory available

RS 75 AIS-316 Product	PS 25 AISI 316 RS	Aperture dimension & (mm)	Voc RS 225 AIS1 3 Weight (kg)	Art. No
S 25 A/5/016	34 · tž	25-26	0.04	RECORDOSTUES
IS \$1 A(S(3)6	4-17	11-12	6.1	(8500t003NGZ)
PS 43 ACCIDE	4-21	AL 46	0.24	RS00100431023
RS 50 AB/SNE	8-30	50 - 52	039	RS00100501023
S 60 AS:DE	26-40	68-70	0.5	RSOCTOOGRACE2
S 75 AESON6	24-54	15 - 27	0.6	RS00100751023
25 100 A/S/316	48 - 70	100 - 102	0:	PSOGECTODEGES.
IS 10S AISON	66 - 98	125 - 127	36	RS00101251623
IS 100 AISCRE WOC	49 - 90	100 - 102	0.8	RE000001001023
IS 125 AISIBIG WOO	66+98.	125 - 127	(3.6)	R5000001251025
IS ISO AISCIN WOC	98 - 110	150 - 152	1.0	PS/000/0150/023
IS 175 ADEBIG WOC	III- 146	115-177	23	R500075750020
IS 200 AISBRE WOR	130 - 170	200 - 203	2.7	(ASOCIOCASOCA)
is as Asidili Woo	251 - 1eE	225 - 229	3.7	1500002250001
RS 250 A/SESWI WOO	176 - 206	250 - 251	8.5	RS00002500021
75 500 A(5),516 WOC	206 - 236	300 - 303	67	(60000000002)
IS 350 AISISH WOC	294-286	350 - 353	72	(850000350007)
IS 400 AISIS 6 WOC	294-330	400 - 403	34	RS00004000021
IS 460 AISING WOC	344-386	450 451	10.7	PS/00004500023
55 500 AISISIG WOC	294 - 426	300 - 503	ti.	R500005000021
IS 550 A/SI316 WOC	444 - 486	550 - 553	34.4	R500005500029
S 600 ASS/6 WOC	494-536	600 - 603	57	R5000060000021
RS 644 AUSEDIG WOC	\$38 - \$60	6467-647	17	RS00006440025

SELLOS ROTEX RS OMD

El Roxtec RS OMD es un sello de entrada redondo que consiste en dos mitades con capas desmontables tanto en el interior como

en el exterior. Es ajustable para adaptarse a los tamaños de collarín no estándar. La unidad de compresión está integrada en el sello. Permite la instalación en torno a un cable o tubería existente

Adhesión por dilatación en agujeros Para un cable o tubería

Titulo	Para cable/tuberia Ø (mm)	Dimensiones de apertura Ø (mm)	Peso (kg)	N." de art.
RS 25 OMD AISI396	36-12	26 - 30	0.08	RSC01002S1023
RS 31 OMD AISI316	4 - 17	32 - 35.5	0.09	RSO0100311021
RS 43 OMD AISI316	4+23	44 - 51	0.32	RSO0100431021
RS 50 OMD AISI316	8 - 30	51 - 58	0.41	RSO0100501021
RS 68 OMD AISISIG	26 - 48	69 - 76.5	0.6	RSO0100681021
RS 100 OMD AISI316	48 - 70	101 - 108	1.2	RSO0101001021
RS 125 OMD AISEN	66 - 98	126 - 143	2	RSO0101251021
RS 100 OMD AISI316 WOC	48 - 70	101 - 108	1	RSO0001001021
RS 125 OMD AISI336 WOC	66 - 98	126 - 143	1.6	RSiC00001251028
RS 150 OMD AISI316 WOC	93 - 119	151 - 168	2	RSO0001501021

SELLOS ROTEX RS OMD

Sello Roxtec RS EMC

Sello de entrada para EMC, para un solo cable o tubería.

El Roxtec RS EMC es un sello con garantía de compatibilidad electromagnética diseñado para un solo cable o una tubería en collarines metálicos. El sello de entrada se compone de dos mitades con capas retirables, con lo que se puede adaptar a cables y tuberías de diferentes tamaños. Se puede elegir entre los módulos Roxtec ES para apantallamiento electromagnético y, por otro lado, los módulos PE que protegen frente a las perturbaciones conducidas. El diseño del sello facilita la instalación en torno a cables o tuberías existentes. Utilice la varilla de test de continuidad eléctrica Roxtec para comprobar el rendimiento eléctrico de instalaciones de paso de cables Roxtec BGTM o ES.

- Calificación contra incendios
- Estanco a gases
- Estanco al agua
- Estanco al polvo
- Resistente a roedores
- Rápido y sencillo de instalar

Calificaciones y certificados

Fuego

CLASE A de acuerdo al estándar FTP IMO 2010 CLASE H según el Código IMO 2010 FTP+ curva de carga de fuego HC Clasificación E/El según EN 1366-3 Clasificación F/T según UL 1479

Estanquidad

Gas: 2,67 bar (catastrófico) Agua: 4 bar (catastrófico

Soportes

Estructura de instalación

Tipo de montaje

Datos de los componentes de sellado

Kits de sellos reconfigurados

		·		
PS 100 ES ASLEN WOC	5-548-0-7GG	100 -102	76.00	ERSOCOROTES
IS SEE ASSESS WOOD	14 (64.0-98.0)	125 - 127	12	ER50004251(2)
ES 150 ES AVION WIDC	to (90.0 (10.0)	164 - 167	76.1	195000/60/01
IS 25/ET ASSON	14.17.6.12.01	25 - 28:	0.04	ERSONNOSTRE
IS STEE ATRON	14 (4.0-03/0)	31-30	9.8	EASONOGOPUT
IS 40 (S ASION	Nr 44.0-22.00	A3-41	934	ERS0900421121
PS 50 E3 AZEMB	% (6.0-30 m)	50 - 62	6.31	ERSONNOSORUI
15 66 ES A/16076	14.08-0-48-0:	68:70	0.8	EMBOTOGETTIT
IS TS ES AISON	N Q 6 9 14 60	6-0	66	ERSOSOO79101
S 100 GS AUSTINA	% (ABIO-700)	186 / 100		BRS0101001U1
6 325 83 ABUTM	14 (66 0-16.0)	126 (92)	36	ERSOTOGENETI.
IS 100 PE MELTIN WOC	34 (48 (3-70 0)	100 - 109	68	HES000/00/129
IS 125 PG AUBITIN WOC	ts (86.0-98.0)	Un - 127		985000USTU1
IS SEE PE ASSINE WICE	N (90.0-119.0)	190 - 192	.5%	PRS0001601101
IS 25 PE ASASM	to die Quit	26 - 26	0.04	#RS6100031121
S 3676 AULUM	No. of Children	31 - 30	0.06	PESGODOLLYT
S AD PLASEN	% (4.0-200)	0+41	1026	FRS0100421521
N 90 PE AIRON	tx (6.0-50.0)	50 - 62	0.31	Historosomin
Cart PC Addition	to contract contract	68 - 70	0.6	Pfideroosstut
ES 75 PE AISION	ty ged-sets	28.07	706	PRS0100751121
KS 100 PE ARSUN	N MB G-70.0	100 - 100	18	Misororodran
NS 125 PE Aligane	N 86 0 16 0	Us - UF	16	PREGODULETUS

SELLO ROXTEC SPM™

Roxtec SPM™ es un sello ligero que no requiere soldadura apto para cualquier tipo de tubería de metal. Se instala en un solo lado de la estructura de metal cuyo grosor puede variar desde los 5 hasta los 15 mm.

- Para una tubería
- Instalación desde un único lado

SPM 81

5PM 138

Thuis.	Para cabilifuporla Ø (mm)	Commenciones de apertura Ø (men)	Pro Age	M7 de ers.
SPM 39	Ø-12.	39-41	0.14	167594
NPM 40	12.76	4:46	Q34	153052
(294.40)	16:20	41-51	0.2	167800
90M54	19-25	58.5 - 97.5	0.25	153060
SIM4 99	24+28	588-425	0.29	75,5064
SPM KO	79-38	665-665	030	153068
SPH4-69	32 - 36	685 - 725	0.37	153072
5044 97	37-42	77 - 81	6.47	1660TT
1694 (II	41.4 - 46.4	(01 + 206	0.46	153040
SPH (D)	67-51	60-40	0.5	153096
(DM 90)	12.76	92 - 90	05	153080
SPH4 108	962-61	105 - 107	0.7	753004
SINATIO	6.0	110 - 114	QT.	20/104
SIMATHS	72.2 - 76.9	119 - 123	0.6	153068
56M4125	77-19	125 - 039	0.9	20600
S/94136	86 - 92	138 - 142	10	153056
529 4 149	N9 - 103	149 - 151	121	167594
SPM 153	303 - 107	153 - 157	12	20012
SPH157	107 - Tri	1975-161	12	153092
SPH1168	113 - 117	168 - 1772	16	153096
SEKTER	125 - 927	13E-102	17	10705
Sine tos	38-186	166-192	10	16/2596
SIN4 THE	1885 143	196 200	19	153900
50M 20T	197 - 162	207 - 228	2.2	167597
(PM 22%	167-178	201 - 250	2.4	153904
SPM 266	206 - 210	366 - 270	29	206124
(2M 27)	28 - 203	279 - 263	3.1	153036

A.5

SELLO ROXTEC C RS T

Sello redondo para entradas de cable individuales.

El Roxtec C RS T es un sello de entrada compacto para cables individuales que requieren una clasificación de hasta IP 69K. El sello está disponible con carcasa en acero inoxidable o latón niquelado. El dispositivo de paso de cable está disponible en cuatro tamaños para cubrir cables de 3,6 a 30 mm.

- Estanco al agua
- Estanco al polvo
- Ligero
- Permite cables preacabados
- Sometido a prueba de vibraciones

Calificaciones y certificaciones

Fuego

Clasificación E/El según EN 45545

Estanquidad

IP 66/67, IP 69K, UL/NEMA 4,4X,12,13

Datos y componentes de sellado

Lubricante Rostec

Kit C RS T

Kits de sellos reconfigurados

Titulo	Configuración	Dimensiones de alterturo	Peso	M.* de ort
C RS T 25	Tx (3.6-12.0)	33 - 33	0.1	CRST010025046
CRS Tat	1× (A.O-17.0)	46 - 41	0.16	CRS7090039046
CRST43	% (4.0-20.0)	52 - 52	0.39	CR57010043046
C RS T 50	1x (0x 0+00.00	64-64	0.7	CRST0N0050045

Estructura de instalación

Tipo de montaje

A.6

SELLO ROXTEC RS EX CON SL RS

Sello con calificación Ex para soldadura, diseñado para un solo cable o tubería.

El Rotex RS Excon SL RS es un sello con calificación aptas para zonas Ex e EX tb. Cuenta con un collarín de metal y está diseñado para un solo cable o tubería.

- Calificación contra incendios.
- Estanco a gases
- Estanco al agua
- Estanco al polvo
- Resistente a roedores
- Rápido y sencillo de instalar

Calificaciones y certificaciones

Se añaden, se renuevan y se sustituyen certificados continuamente, visite la página periodicamente para garantizar la conformidad.

CLASE A de acuerdo a estándar FTP IMO 2010 CLASE H según el código IMO 2010 FTP + curva de carga de fuego HC

Estanquidad

Gas: 2.67 bar Agua: 4 bar Ex e/EX tb

Datos del componente de sellado

Aquí encontrará la información técnica sobre cada pieza específica de nuestro sistema.

Acero dulce imprimado

Titule	Configuración	Dimensiones externos 8 (mm)	Dimensiones de aperturo Ø (mm)	Pero (kg)	H.* de art.
RS 25 W Ex AISI316/PRIMED	% (3.6-12.0)	34	25 - 26	0.17	EXRSW0250002112
RS 43 W Ex AISI316/PRIMED	1x (4.0-23.0)	53	43 - 45	0.6	EXRSW0430002112
RS 50 W Ex A/S/316/PRIMED	1x (8.0-30.0)	(4)	50-52	0.9	EXRSW0500002112
RS 75 W Ex AISIXIN/PRIMED	Tx (24.0-56.0)	89	25 - 27	15	EXRSW0750002102
RS 100 W Ex AISI316 WOC/PRIMED	% (48.0-70.0)	115	100 - 102	:40	EXRSW0100102112
RS 100 W Ex AIS(316/PRIMED				22	EXRSW1000002112
RS 125 W Ex AISI916 WOC/PRIMED	% (66.0-98.0)	342	125 - 127	2.9	EXRSW0125102112
RS 125 W Ex AISI316/PRIMED				32	EXRSW1250002112
RS 150 W Ex AISI316 WOC/PRIMED	1x (93.0-119.0)	165	150 -		•

le	Configuración	Dimensiones externos Ø (mm)	Dimensiones de opertura Ø (mm)	Peso (kg)	N.* de art.
RS 25 W Ex AJSI316/AJSI316	1x (3.6-12.0)	34	25 - 26	0,24	EXR\$W0250002121
RS 43 W Ex A/S/316/A/S/316	1x (4.0-23.0)	53	43 - 45	0.6	EXRSW0430102121

Titule	Configuración	Omensiones externos Ø (mm)	Dimensiones de apertura Ø (mm)	Peso (kg)	N.º de art.
RS SO W.Ex AISI316/AISI385	1x (8 0-30.0)	63)	50 - 52	0.9	EXRSW0500002121
R5 75 W Ex A/533%/A/5/3%	1x (24.0-54.0)	69	75-77	15	EXRSW0750102121
RS 100 W Ex A/SI216 WOC/AISI316	5x (48.0-70.0)	115	100 - 102	(23)	EXRSW0100102121
RS 100 W Ex A/SI316/A/SI316				23	EXRSW1000002121
RS 125 W Ex A/S/316 WOC/A/S/316	Ta (66.G-98.0)	w	175 - 177	12	EXRSWUT25102121
RS 125 W Ex A/S/316/A/S/216				12	EXRSW1250002121
RS 100 W Ex AISE316 WQC/AISE316	12 (93.0-199.00	96	150 - 152	12	EXRSW0150902121

MARCO ROXTEC S

El marco Roxtec S es un marco de metal de adhesión por soldadura para aberturas muy precisas. Está disponible en distintos materiales y con una sola abertura o en combinaciones con varias aberturas de anchura o altura.

- · Se ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa
 - Adhesión por soldadura
- Disponible accesorio de SE PPS para sellos de tuberías plásticas

Atom Silve Hyrmsolo

THE CO.	*******	Report of the Article (1991)	200 (100 (100 (100 (100 (100 (100 (100 ((maximum money)	70.74	10000
250 (000)		1919	300000 m.	140-0-0-124-0-0, (-11	50000000000000000000000000000000000000
13/99/61		100 - 60	TE+0.00	2367 41 10 7 4)+	10000000000000000000000000000000000000
LALLMAN,	1	la-isi	#631461E	44-110-1	.11	GG00000000
Lavarrent.		90.00	20120-00	Sections.	- 7	marries :
THE OWNER.	4	00196	(0041010)	98(0) 6+100(0)	69	acceptace and a
risemun:	(E.	1001100	700 (0) (40)	260V-01100V-1	103	100000000000
Line-recent:	1	1818	Detailed to	100000000000000000000000000000000000000	166	
17-5479600	3.5	(0.49)	75 (25) FBF	The CHARLES	.29	10000
12-10-70-00	4	G(1)	405.000.00	404 C (1 (m) 4 ()	110	300000000am
Distriction .		1849	Molever	SHIP TYPES Y	+1	
Land MIRE	P	100436	585,104,40	4000Y3L/3m0H-5		7004
Lineman -		(80-)86	95.50.00	West tripped 5	94	Title:
hai bida	1 1	300-W	MILITARINE	44-	100	-
140 2000		300 907	IP-CTEASOR:	and the second	187	90000000000
Lastemadii		100.00	4011/01/10	44711971	**	
Lacimon .		distri	Distriction	Section 1	- 34	
1-68 3444011		2010	MILITARIOS.	\$100 mm mm m	777	1000001881
Free Proof II	24	90 - 00	\$51/30 cm	360 c 300 c	101	(constant of
Committee:		100000	1405 + \$46 + 00°		10	1000000001
INVESTOR .		Sterio	PURPLE.	THE REST LET	71	THE REAL PROPERTY.
Town Height	- 4	761-00	9075 - We - We	4000 to 1000 to	56	DOSANTOCKES

76.00	Spanners thereone	Reprote state setteds errors	(Programs amount Available	Strongscong de- (destura Ant/A (1991)	No digi	Notice and
Services:		2014/201	TEL + SEL × AU	\$346-0-A 300-0-10	911	505-6000044
Service interests	19	200 (100)	9035 x 103 cm	-M66/s1/(+3/0)(+0/3)	30	500-400000000
Salvar honem	9	200 s SE	761 + 200 + 400	Mark School Is	348	100-Marie
(an execut)	0 0	200(1100)	2005 v 200 s 40 c	History and Park	- 11	100000000000000000000000000000000000000
Sharmen.	1) [20.00	THE LIBERTY	attention accounts	36	2000000000
1.641.000-633	0.	200's 1961	48.5×200×66	A0499 (L45409)(N)	(2:	50046000000000)
increas.		700 e 100	Historia	Mark Exposts 6	1.0	THEOREM
166 PRINTO	6.	200 a 160 :	9821/128F (60	2006-0-01200-0-0	(4.5	100000000000000000000000000000000000000
Deministr		700 (100)	Windstein etc.	75000 T C 2440 T T	768	900000000000000000000000000000000000000
transference	à à	200 ± 100	540 X 1 460 x 60	New York Control (1)	0.7	100900000000
H-62 HHEE		200,4760	29+4E460	THEO, 8 + LANS VO	TRU	100000000031
10-0579980	- 4	700 4 100	4015.676.1100	ACAMMITIS (MAY) TO	75.5	500000000000000000000000000000000000000
Service Producti		200,4160	332 7 495 7 400	\$8697.5640000	.00	200000000E4E
La-successor :	- 11	200 4 1881	BSS x etc citi	3060 0 kM600	26.0	20040000000
034990,0000	197	700 (100	705 + 475 × 66	206(1) % + CR(-1) %	364	1000000000000
1 (b) 000 (ii)	1	201-140	2003.7 SEC. 107.	fathing its abbott-ty	38	STOROGOGOTTU
i na meso:	1 1	D0+346	20129010	2000-01/6 x 2000-1/10	(94)	100000000000000000000000000000000000000
Lackmen		90.500	457120110	AND STREET	14	500000000000000000000000000000000000000
miner:	+	(01)346	112+200×HI	29(-1/16)(2006-1/16)	364	100000000000
SALOWER:	5	0.146	1025 (200 v oil :	96/17 (1.0001-1	36	500000000000000000000000000000000000000
LINE PRINCIP		39 x 346	394×300×66	200(-): 5 x 300(-1):1)	79670	SOMEGOGOGOGET
See less		SUGE.	Minimum.	March (March)	- +	Avendore:
10-62 (MIRE)	1 4	100 + 940	29 x 500 x 60	200-1/01/086/07	12.6	someocoocity
(1907) (1908)		2017	WY - 100 - 601	ASSESS TO THE OWNER.	776	2008000000
Seek Reen	8.	100 x 340	527+100×40	359/V/S+590/ICS	16	1008000000000

Acero incuidable

There	April 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	Algorith det det aetikok (hvers)	Compressions elementarionside painty	Chromosom (A abeliasi Ans/A (mm)	79	N*149.445.
E246A0000	10.00	130.1-00	1405 +101 +40	\$665 N - 000 F / 000 F	312	(600)0000000
SHANIE	- 1	181146	Physik em	PROFESTIONS	397	tououcons
52-3 NODE	A	100 100	-05.5 c321 k00	90401/11+100V ±	56	900000000000
92HA0/96	H. H.	100 x 00	50×55+60	SHEW ALTERNATION	.75	800000000000
124.46Th		120.400	M25 x 32 x 400	Milled - 0.4 TERM - 0.	10.0	3000000033
E 246 A/GERE)	100 x 00	98+10+60	(950-0-0) x 1030-(0-)(-	364	(40000000000000000)
S3-SHARIPH		200,00	5403 y 233 x 00	MAN TABLET		500000000000000000000000000000000000000
6250G A005W		000-00	25+242+60	200/01/1/240010	. 4	fotat
12520100000		101.00	arryigy m	ACCOUNT OF STREET	11.0	1000
12-3-aut/56		120 3 60	102+242+46	3340-V H + 244/V/H	- 1	(1000)

	in the same	THE .	-	25000	PH-10	W-9-30
-		100100			100	
inime.		00000	(monare)	25/04/1987	(40)	000000000
Admitte.	4.	0.00	- Hilliman	manifold agents to	46	-
		100 cm	Sections.	DETTIMET	- 10	
100	-	2018	- MO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 To 100 TO 1	46	
Dicesie .		(0)-(0)	The Parket	300 S 130 CX	(11)	***************************************
+++		1001100	38841365100	-07112077	- 10	
-	141	C - MARKET	(NAME)	metament.	- 14	-
	-	- Species -	- altra discoli	all the second	76	
		100.00	(B) BAUM	Methanic	180	
++0-(400)		000 mm	mo + 1 000 - 00		100	
tive in .	-	2 100 kiter	301.011.00	med in more	CINIC	
his motion	- 1	120+100	metal beam.	referri hadessak k	4.6	mentababababa
recently.		20100	Three in	and the same	- 10	THE OWNER OF
Marine Marine		3111/00			40	
100 mile.	100	1001/00	100 pp - 100	THE PLANT OF	. 96	000000000000000000000000000000000000000
-	1 1	5201100		46-1100-1	. 4	0000000000
Chiambe.	4	1 Special	Section.	Section 12	100	ananimen.
Add to	1 +	70.00	With divine	Mental Control	- 11	***
CORPORATE		1-1 100×100	(F1491W)	270-031-000-03	100	
TT11 (1990)		000100	0/11/0/00	Ten (117811	710	
1000		100×400.	101-010	District America	190	months on the
	-	Sancial .	- MALLESTON	minch interest	-84	
_	-	TO SEC.	50.000	mentary.	- 100	EXP. (0.00)
\$1 more.		50104	361136100	1000110000	- 04	
Per mile		7 961340	(212610)	and trimers.		
(Married		40c+ (m)	004 Ex 200 (100)	499110003	- 41	
Name .	1 4	481.00	mine.	2012/00/20	164	\$1000000F
N-W		Street	Windows	West 100 100	160	
		15004		380.0318000.0	794	
144/4/	1 1	78196			10.7	
100/400		00100	- Producer	25/05/2003	19.6	
***********		- Section	20110000	man + + + + + + + + + + + + + + + + + + +	14	
Administration of the last of	1 -	- week	The Property	Servicionery	200	1

Alumnio

(Taxulo)	Agentua de orrancos	Espaçio utili de esitodo (mm)	Christiansi enternes Ann AlaCo (htm)	Dimensiones de poerture Annald (mens	Pero orgi	N° mart
\$24A.0	10 10	120 x 60	1403 x 101 x 001	\$420-17-11 x (2M+17-1).	0.0	300200000000

(teat	Approximation of the second	DENG CRAFT	18************************************	Occarion de la confession de la confessi	lm(-ky)	104° ja	reft)
Annau.	14	100×100	200000	2001000000	36	9000	000000)#F
Post out	(4 III	900100	-054 (05400)	G00101011	10.	0000	00000000
eman.		Shree 1	(Brickia)	detions.	- 11	/9000	000000E
EPPAR		100:100	- MEDICO - TO	American Company	-	2000	00000008
ESANH.		(20.+80	700 (12) (40)	2004 (1.100/1)	3,6	hoos	Majoriton I
Ehot N.L.		taine.	TABLEST	HEAVY ARTESTS	U.	,0000	SHOW A
10:00 to	-	50×100	251300100	797310m13	- 11	-	
NAME OF TAXABLE PARTY.	0.0	0000100	3 909 c26 cdil			100	0
bracks.		lancar -	1013016	THE STREET	144	-	
PERMIT		THE RESERVE	we observe	7407170777		-	000000
THESE	-4	100 (100	DOM:NOT	PRESENT	36	Second	000000000
145.60		1891.00	4774751110	440010000	- 10	7000	0000000000
Assert C		1974.00	Symile:	SP#15/90/01	316	1-	Thomason.
K196,4mi.		10+10:	4001-754-00	46-61-60-67	14	3000	000000mg.
Yester.		199100	District.	Territoria	- 6	1000	0000000000
limit to	1 . 1	70.00	the identity		0	-	
50-0050b	4 1	1001/00	29480+60	2911 E 1811 V A	14	8000	-00000000
hi-id its		101170	623×30+61	204/8 H (804 V)		2.00	tuooooat
Access.		-	this time!	SHIP SHIPS I	10.	1000	-
teater.		394300	OR STREET	680 F. S. Story V. S.	Té	-	
Production 1	(80-)	DH +100	THE PERSON	984-1 MILES	**	1	
14140		outrer .	- American	100 6 6 1 5 mm or 6	ii	1000	000000011
PERMIT	-	THEORY	PERMANE	(Northberry)	18		manual .
Teachin		20.00	4931(9)16	mm(// 7+2450/c)	No.	1	0000000000
Princes.		latin ray	107-201-0	Berts 100 mg	24	1000	114000000
white have		Street.	900 (200-0)				
700.00		100100	9212010	2007/04/2007/03	-	1	00000000
Territor		2014	7014719		- 11	-	00000075
hered 4.0	1 4	100/00	(Develop)	STREET, STREET	- 11	4	
10-9240		101100	453.000 m	menoralization of			DODOOODINE .
ha-a-cour	1	100 - 100	0072-00-00	54-0 tr-de-US	10		000000E
APPEAR.		in-thi	SERVICE STATE		6.		inional .
DAMPER INC.	- 1	20100	Michigan	mang-county.	1/	4	00000000
harmi		Street	San a galanti	180 + 61 (00011 E	44	1	000000000000000000000000000000000000000
140.414		20124	20 a feature	months and the	- 0		00000000
THE ACT		201.50	-0312810	me = 11 222 = 1		1	
Teres.			- 3000		11		DODOOUT.
		100,000	101 x 50 x 61	D-01/3+1000010	- 11	1	0000000111
The Act	1 1	200,000	2011199-D		14		mananiii.
Through I		781200	T00 (00 (00)	200 (1.0 × 2000 (1.0)		4000	annocosii
-		Parameter (Jerosiana afron Archi	Y and	Ĭ ==		(s) may
FRECAS.	8.7	30120	25 4,06 4,00	25-9 IN 198-E I	-		35000000007
1.00		V0.704	20000	PLACE BUILDING	-		500000000000
Harris A. Galo-		1200 y (Mel)	19(3) 2 9 (86) x 00	-engraphy in a mineral in	(43)		

MARCO ROXTEC G

El marco Roxtec G es un marco de metal con ala disponible con una sola abertura o en combinaciones con varias aberturas de anchura o altura

- · Se ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa
- Adhesión por empotrado o soldadura
- Accesorio de molde de empotrado disponible
- Accesorio de marco de extensión GE disponible

Activo dulce imprimisco

Tricks	******	Figure 25 and 46 periods (1-1-1)	antones-seklati (mm)	Distriction in the control of the co	100.00	W Minte
THOMAS		3000	0003 (bym)	WEST STORES	. 111	SAME ROSOTTO
1.342.000AU	15	90 x 66	29,410,46	200-919 - 600-919	1.60	(COLORSOORIS)
1.33 TREAT		30 (40	407.05100	Aug 11 (1/20-11)	114	(OKONOOOMI)
240000	0 1	90 4 00	682133140	15647 9-12047 1	(a);	(000000000048)
Listaneo	1	30 years	Mar (10 + 40)	W001034000103	117	400000000000000000000000000000000000000
FDC PROSE	161	195 + 69	(95)×10 ×60	766-113-120-1/-(10.3	(consessore)
1247WHEE	1	307.63	HOUSE THE RE	-and organism	39	390000000000
Datasa Netrale)		190 x 60	24120110	230 F 8 x 240 F (1.0)	28.0	(1000)
a postaneous	-	3010	with section	American September	76	\$1000000000
0.004400460	(6)	190 x 661	(85) (30) (60)	Radio (Lo Describit)	500	MACONON COMMISSION OF THE PERSON OF THE PERS
e bod freetin	-	70165	minime:	amount to expect to by		-
(Dolling)	(0.)	100 4 88	781130+60	789-9 (1.43-0-1.8)	240	10204
SACRIMED		377.00	3031/03100	98-Y 1 (189-1)	24	honocomment
1429900		180 x 190	38 £ 178 5 ± 60	200-Y N 4100-Y/6	427	(00400000000
SARAMAN	1 + 1	589×180	-151799400	well transition.	84	500000000000000000000000000000000000000
1 massess)	1	180 x 100	550×1903±00	\$5e-V-5 + 100+V-0	(83)	100100000000
SECUME	-	599×581	(1023145554)		84	100000000000000000000000000000000000000
I no tendo	(+)	330 x 190	T00+7703+00	200-319-100-419	111	100100100000
S AND DESIGNATION OF		Use do	365-56-W	mark talkers.	- 42	subcumments:
(Deeply 5	-	- 389 × 100	100 x 300 x 40	100-10-30-00-00	(99)	100140000000
Circul/Rings	1	120+120	495139100	OW FIRST MINE LIST	384	300-000000

7700		TRANSPORTER		- Tempowell street And Durin	(a_{ij},a_{ij})	2000
teeline:		- F1F1	H143019	mora superior	- 70	E3-0000
(married black)	w	2100	(80) (50) (6)	BB + 4 / Rec ()	(pr	
minimize)		WHEN I	751-30 cm	March Here's	1390	3000000
and the last	-		-		44.	-
List Herein		200,4000	27.1291.00	2801114200111	188	
THE PERSON	W.	3000	40 E 2010	0.0114-36057	. 44	
Distribute:	100	1001040	T0428166	199751-140000	7987	200000
LA PRODU	- +	0.18	38011480-00		- 5	-
144 7886	1	W/W 1	701-001-01	780 8 11 - 2400 9 11	40	
10001060	100	(00 × 000)	4033-40-60	HR0133-60000	0	3000000
processor .	100	1001090	25 chiese	E840-0653	190	31900000000
-	- 1	101-01	and or other lives		16.5	-
MANAGES.		30 (90 -	(81 × 00 × 00)	MANUAL CONTRACTOR	.00	3400000000
10000	-	10010(00)	000.00 m	MINISTER 4 + 4/6×11 (0)	201	
and their		50 cm	(8) × (8) (8)	100-1-1-120-2	. 804	-
da-desse):		(Street)	-	halo (in property) (i.e.)	91	-
2047040		1001340	ET-Deser-	PROTECTION S	1861	
lita) temelii		1001-040	10151704140	667-9-800-F-F	0.0	
Million.		model -	mine	1949 11 1800 2 2	The	-
Mineral		Mary .	and other time.		79.0	
144194	1 . 1	2001240	2012010	MARTIN BOOK I	-40	
Description	()	2007 (4)	000116-00	100 *** 1400 ** (**		-
Designation (1 4 1	1001346	20100100	production of the control	441	0.0000000
the same		Store .	F10 (190 F1	emetrometro	- 75	-
LEBOTHER)		2003/045	2221099-00	3447010850	3.83	300000000000000000000000000000000000000

Acero inoxidable

Tribula	Apertures do marcos	Especio útil de sallado (mm)	Dimensiones externos AcidAlxD (mm)	Ormanijones da abertura AnsAl (men)	Pero (Hg)	N° do art.
5.2x1.4/5/316	j n	120 x 60	140.5 x 121 x 60	1426+1/-11 × 1236+1/-11	22	5002000000021
5.2x2.AISI06	2	120 x 60	271 x 125 x 60	273(+1/-1) x 123(+1/-1)	39	5000000000271
\$263 ASING	2	120 x 60	409.5 ± 127 ± 40	204-Y-1(x 1231-Y-1)	55	160000000000000000000000000000000000000
5 2X4 ASCIII6	-	(20 s.60)	532 x 125 x 40	554(+17-1) x 123(+17-1)	7.1	5002000000429
5.05 AS0%	5	120 x 60	662.5×121×60	865(-W-I) x 125(+W-I)	87	500200000000
S 2xE AIS(3)E	6	120 × 60	793×121×60	796(+1/-1) x 123(+1/-1)	10.3	5002000000671
S 2+2/0 A/S/S/6	2	120 × 60	140 5 x 232 x 66	145(+1/-1) x 254(+1/-1)	4	59000000(303))
5 2+252 AIS(3)6	4	120 x 60	271 x 242 x 60	273(+1/-1) × 244(+1/-1)	8	(08/53
52×2×3 Amms	61	120 x 60	606.5 × 242 × 66	60-67-17-13 x 26-61-17-10	102	113286
\$ 2+2+4 AS(0)6		120 x 60	\$32 x 342 x 40	534+1/-1) x 24-1/-1/	36	113396

Male	Asmen emisse	Stpace (6) (to accept (core)	communes commer Analidi (mmi	SAMPLINES No. phorney Arcold (mm)	Though	All-desires
140 (400)	HI 1	120(+120	5405 x 179(5 x 40)	140(10))) + (80(10))	119	10040000000
S-W2 ARREST		.00 + (20	25 x 1995 x 00	273HY 5 YHDON N	AT.	500400000000000000000000000000000000000
6-43.MSSW	1	100 + 100	4015 x 579.5 x 400	404(*)/().+340(*)(/)	6.6	(00000000000
S mic ACODS		100 x 100	5824795×60	684(H7/1) x MQ(H7/1)	9.0.	100000000000000000000000000000000000000
Sant-Alteria	1	sarviae	Mate 1981 + 60	mir-vip interior	30.1	900000000000000000000000000000000000000
1 ed MSDs	100	320 x 520	796×795×60	2950-07-5 x 1900-07-19	(0.3	(0000000000)
5 min (6075)		700 x 700	765x36x90	Selection Bergera	446	\$2004,0000077
S-in-scattle		320 v (20)	25 c 89 v 60	223437 ft x 360-U-U	9.6	35000000000000
1444570076	R. C	700(+120)	-900.0×300×000°	6949/EX2009/9	DOI:	15000000000000000000000000000000000000
- Marking 2		100+120	331 x 250 x 60.	\$500-10 PK TROPE (1)	16.9	issaccount
SHASASON :	160	100 ± 100	0625×300×40	0005-3-9 < 3011-5-5	iss	HS00000000001
E SHANG ASSETA	100	330 + 130	503 × 309 A 003	988(+975) x 363(+97-1)	344	59000000004EER
56/HIIIH	1	100 + 160	1003+236×60	368+3/-E+39001000	11	900000000000000000000000000000000000000
FGGAGGE.	83	339 j. 300	E-225 x 228 x 600	275(+1/-1) x 244(+1/-1)	5.5.	(6000000000)
The Attric	1	2014/00	60.0 c200 c00	ROMENTI CONTROL	W	100000000000
BUSANN		300 v 100	105/ x 250 x 60	SMOOTH'S BIOSVIII	0.0	10000000000001
166A000	1	700 (1900)	6625 / 228 / 40	000(+0/1)+3+0(51/3)	9	950000000000
See Amore		XQ0 / 100	76.×239×60	7660V-0 x 2400-V-0	144	5000000000000
6-6-7 85000	6	100 s 100	3403.6466.640	5065761-98657-5	58	(00000000000
59-60 NSDR	4.	:00 y 900	25 9 40 (40)	270(V-0.x 470(-V-0.)	93	1000000000000
ri-salvenii.	1	100 + 100	4001400-00	A0419 ST-08-010	16.6	ydososociale
1.6-014.A5339		339 j. 300	002×496×00	554-9 ((+ 200-9 /)	(10)9	16006000004
Less with	19	200 - 100	9623 X (FE x 60)	Ottomin a conveni	341	400000000002
EXHAPANTH .	10.	30 v 100	100 x 600 x 600	2000 to cheek a	2011	100000000000000000000000000000000000000
ESO NUMBER	41	130 y 1945	1403 x 286 x 60	\$485970 + 3000 ht h	89.	(0000000000)
S No. 2 APRILIDE		Minde	771 (258 + 62	2500-91-30000-0	-64	30000000020
EBSMSSW.		130 (940	-681×200×60	504W (1x.500s-U-l)	112	100000000000000000000000000000000000000
BAARS.		130 / 340	(52×290×60	\$840 (Fit) > 3000 - Vi-II	55,4	1000000000421
SMINIM	-1:	130 x 340	6615 y 280 x 60	empty to a hadron to	543	10000000000
186 AGDI	The second	100 (040	193 x 298 x 60	295(45-11)-200(-17-1)	(664	(40000000000)
Similar province		107 (240	1001×100×00	100(1) Ex 100(1) E.	Ŧ	(00000000000000000000000000000000000000
19:02/638	**	200 x 340	25 x 296 x 60	270-V-11x 5360-V-1	10.0	250000000WE
sendation)	D.	100 (100	40.1596140	404(1011) + 1000-1010	0.00	1500000000001
S de-feri Arotto		1011290	\$12×100×60	Sherry framework fr	224	39000000000000000000000000000000000000

Trule	Aperturos de miecos	Espacio útil de sellado (mm)	Commissiones codemos ArwAlsids (mm)	Elemensiones de abertura ArioAl (mm)	President	N-do en
5 2x2 AUU	2	120 × 60	271×121×60	2758+1/-19 x 125(+1/-1)	13	5002000000251
STATELLY	3	(20 x 80)	401.5 x 121 x 60	40-01/11x12301V-8	1.9	5002000000331
52x4ALU		(20 ± 60	552 x 121 x 60	E34+V-I) x 825+V-I)	24	500200000042
52/5ALU	5	120 ≤ 60.	.662.5 m 121) 60	665)-Vilta 125)-Vilti	i	5002000000531
4 244 ALU		120 ± 60	793 × 121 × 60	7951+V-I) × 123(+V-I)	25	5003000000EE
52-343 ALU	1 4	125 + 60	3405×252+60	143(*1/-1) x 234(*1/-1)	1.0	500000000000000000000000000000000000000
57-20 ALU		(20 x 60	271 x 342 x 60	2/3(*V-U+244*V-U	2.8	0340
52-20-410	6	120 x 60	405.5 × 242 × 60	404+15-15×3440-17-19	(A)	03492
5 2+284 ALU	0	Q0 x 60	532 x 242 x 60	534+V-0 + 264+V-0	51	ingsasi
5 mil A111	N 1	120 + 120	1405×1295×60	Suggest/- the Suggest/- in		(20)4000000019
S402ALU	2 2	120 × 120	271 x 17915 x 60	2736-1/-11 + 1023-1/-01	3.6	5004000000231
S 445 AUU	3	\$20 × 120	401.5 x 199.9 x 90	404/-V-II x 182(-17-II)	28	5004000000033
5444A.u	× I	120 x 120	\$82×179.5×60	554+17-0 x 1625+17-15	29	90040000000433
5 W.S.ALU	8	120 k 120	0625×9995×60	6465/11/15 x 1002/17/10	3.6	500400000001
SAMEALL)	W (120 x 120	795 x 179.5 x 60	295(+1/-1) x 102(-1/-1)	42	500400000000
S A+WO ALU	2	120 x 120	340.5 x 349 x 60	143(+1/-)) x 351(+)/-()	19	5004400000131
5 4-402 ALU	*	120 x 320	271 x 359 x 60 :	275(+V-1) x 561(+V-1)	32	5004400000231
54-W\$ALU	6	120 × 120	401,5 × 309 × 69	404/1/11/302/10/11	340	500440000033
5 4*4+4 ALU		100 x 100	532 x 339 x 60	\$54*V-1[x 362(*V/1)	5.6	600440000040
S ricket ALU	/10	120 + 120	062.5 x 359 x 00	065(41/-1) × 300(-1/-1)	24	in5529
54-46 ALU	12	120 x 120	793 x 359 x 60	795(+1/-7)×36((-1/-7)	88	103529
S BV ALL) N 1	130 x 130	140.5 x 238 x 60	343(+1/-1) x 240(+1/-1)	100	50060000000131
SWANU	2:	12G x 180	277 x 238 x 60	273(+1/-1) x 240(+1/-))	3090	50060000000031
S GAS ALU	3	320 × 100	401.5 ± 258 × 60	40-9-17-12 x 240(+1/-1)	2.0	5000000000331
S Gu4 ALU		320 x 390	532×238×60	534(-V-I) x 240(-V-I)	3.4	\$006000000478
5 0x5 AL1/	3-1	130 × 180	962.5 x 238 x 60	665(+V/I) × 240(+I/-I)	244	9006000000037
5 0 to ALL!	0	130 × 880	763×258 ± 60	795(*V-1) x 240(*V-1)	A9.	500000000003
1 G-6/1 ADD	2	120 x 100	140.5 × 466 × 65	343(+1/+1) x 468(+1/+1)	2)	SDOLGSGOOGLIT
5-6+6-2'ALU		1261 × 080	271 x <76 x 60	Z75(*1)*1) x 475(*0*1)	2.0	9000000000731
S firth & ALD	6	1902×190	401.5 ± 476 × 60	404+1/-i) x 478(+1/-i).	5.3	9006600000331
S fir fine ALL:		1010 × 3000	537×476×60	\$54(+1/-1) × 470(+1/-1).	6.0	(20066000004)7
S RYGYS ALL	10	120 x 100	6625 x 476 x 60	6656-17-18 K-0004-1/-13	62	200000000000000000000000000000000000000
S Reforb ALL)	9	120 x 160	765.2 ×70 × 60	7666-17-1) a wag-17-11	37	SCHOOLSE
Site! ALU	1	720 x 240	1403 x 296 x 60	\$45(407/10 x 3000-17-1)	135	(20080000000017)
SmIALU	2	120 × 240	271 x 296 x 60	295(+1/-1) x 300(+1/-1)	22	90000000000231
2 B/2 ALSF	3.	120 × 240	421.5 x 290 x 60	404/19/-17 x 3000+17-10	4.	2000000000000
S 864-44.17		120 x 340	512 x 200 x 20	554(+1/-1) x 5000-1/-11	2.0	500800000043
s md AU	4	120 × 240	6625 x 256 x 50	885(-1/1) x 3000-1/-1).	4.2	500000000000000000000000000000000000000
5 BHS ALL)		120 x 240	793 x 298 t 60	795(H.4) x 3000-1/-19.	5.6	5008000000058
T-B-B-I ALU	7	120 × 240	340.5 + 535 x 60	343+V-I) x 586(-V-II)	75	SOCRECOCOCITI

Titulo	Aperturas de marcos	Espação (R/ de seltado (mm)	Exmensiones externas AnxAixO (tratn)	Dimensiones de abortura ArviAl (mmi)	Peso (kg)	N7 de art,
SB-BQALU	48	120 x 240	271 x 596 x 60	225(+1/-1) x 508(+1/-1)	344	.5500000007544
S in BOS ALL	6	120 x 240	401.5 ± 596 × 60	40-6+1/-10 x 5900+1/-10	62	550000000000000000000000000000000000000
S8-BWALU	8	120 x 240	532 x 596 x 60	534+1/-1) x 598(+1/-1)	В	113596

Aluminio

Titulo	Apertures de marces	Espacio útili del aellodo (mm)	Dimensiones externes AnxAixO (mm)	Dimensiones de a bectura AnsiAi (mm)	Peso (kg)	N°dear.
52H ALU		120 x 60	140.5 × 121 × 60.	4434+12-15:x 223(+12-1)	5,8	SOCCOCOCOCST

MARCO ROXTEC GH

El marco Roxtec GH con orificios preperforados y un ala de tamaño estándar se atornilla a estructuras uniformes. Permite maximizar la cantidad de cables/tuberías al tiempo que minimiza el espacio de entrada. El marco de acero rectangular puede utilizarse con el marco de extensión GE en acero galvanizado para paredes / suelos más gruesos.

- Se ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa
- Adhesión por atornilladura a paredes sándwich o de acero

Acero dutte ergarmodo

the contract of		Specialists with a resi		Distriction of the control of the co	100.00	no literate (
F/INFRREE;	1.5	20140	were threat	1000010100000	77	(00000000000000000000000000000000000000
1207660		100 / 66	19110400	(March 1996)	100	\$500000000
13070000	1 1	10.00	and the same	1000 to 00111	11	Summer of the second
CONTRACTO.		30 (40)	E)C (58 at 69	590 F 5 + 680 C 5	(8)	(000000000000
120,000	1. 1.	200 (00)	- HERVINS	965+D 6+225+V/V	46	100000000000
CHERRY	5.5	30.00	2010.00	200 TA 100 TH	107	3000000000
()-00 FB+(III	100	900 (000)	340 11 (30 140)	140-1014/09/04	310	(00000000000000000000000000000000000000
LESTREE	5	-	25-1018	PER CONTRACTOR	16	years)
LF-90 HHTE		20197	4513016	4000 T 1 (48° T 0	91	
District Contract	0.0	200 (66)	1011 00 cW	(041) (1204114)	107	Bessection :
Unicasis:	7 - 4	10.10	MILES IN	mornishers.	10.	
DOMESTICAL.	4. 0.940	59.100	T052000	700 TT-392 TE	9.9	100
he-mine	100	1817190	340,5383.00	FIGURE VIVIEW II	14	(0000000000)
Caldada		401/06	grantial .	Zerosident's	45	20000000
1994C	1	00456	-W31705+60	soon to see a	14	500000008E
(41/00/0)		2003/960	2000 (944-60)	(See-17 to 1 May-17 t)	86	66000000000
Liphalalesis	- +:	(Marrie)	4641145140	(mark by described at	1946	
LANCES CO.	100	382+190	-90100400	Sees of Marrie	ut	SCORE CONTRACTOR
Lead Heren	P	JAG-180	30111 July 140	1001111111111	èr	100000/000000
- Cheek	0 60	Morre	27/80-07	PROFESSION AND ADDRESS.	16	Topostono.
re-attrees	10.2	1907 + 1991	(0.130+90	100011-1007	lut:	4000-000000E

76.6		Secretary white years	-==-	Service (to	-	
14-94-9602		-1156	38 (38)	3600110011	-111	(In-eccess)
	9	- 100 inc	40(5) 10(10)	(m)(-1-) + m(-1)	100	10-000000000000000000000000000000000000
HARD THE REST		100 x 601	This continue	300031300013	pie-	200-000000
-		200	3800 F 100 B			-
Test to the		200,000	-mount	=========	16.	-
(4111004))		100 (00)	40x3+70x40x	ACRES 11 (00(1) 1)	94.	(40000000000000000000000000000000000000
instituti	12	100.00	Market .	200100-00	160	-
144.4440		9/10	MASSYSTATE	digital transaction		1/
Date Hereby		200.00	7012010	West \$1,000 mile	144	100000000000
Loon HHEE		100 (40)	10/1-00-00	100000000000000000000000000000000000000	6	4-00000
Designation of		30.190	THE WHITE	about invest	86	3000000000
-		30.00	ent-mon	*****	160	4-00
Marie Parks		20190	301104-000	941007941	1.66	(10000000000000000000000000000000000000
(dead think)	-	100 i MI	4814 - 48130	96/1/ () ((()) ()	94.1	(22000000000)
tion man	-	200.00	10.10.00	man is about	266	termonari.
HATTER .		dire	THE PERSON NAMED IN		The .	(/000000000)
y St. Physiol	100	30 (36)	2010000	2000 F-2000 L	100	-
(de) (deski)		W-010	30 to 100 - 00	AND TO REST	107	100000000000000000000000000000000000000
distant.	-	2004.000	apinkis.	March Land 4	404	Same Committee
per service.	1 .	10176	THE PERSON	West 11703 11 1	- 01	Name
year-tendo)		Street.	The professional	Aming \$4,000 mult	165	(00000000000
same miles	4	10124	100 To 100 To 100	material by based or qu		(00000000)
Management .	4 1	wile	- minning	STATE OF THE PERSON.	166	Samonas
reermit.		with the same of	881196195	ADDRESS OF THE PARTY OF	- 15	NAME OF TAXABLE PARTY.
-	W.	10/16	1010000	bisely by time of the	9	(Femalescope)

Acero inoxidable

Titulo	Aperturas de marcos	Espacio dell del sellado (mm)	Dimensiones externos AnxAb/Dr (mm)	Dimensiones de abertura AnvAl (mm)	Feso (kg)	N,* de art.
S 2X) AISE96	Э Т	120 x 60	140.5 x 121 x 60	143(+1/-1) × 125(+1/-1)	22	50000000000120
5 2x2 AJSI316	2	120 × 60	271 x 121 x 60	275(*1/-1) x 125(*V-1)	3,9	5000000000221
5 2x3 AISEN	3	120 x 60	40) 5 x 121 x 60	404(+1/-1) x 125(+1/-1)	5.5	50000000000327
S 2x4 AISB16	4	120 x 60	532×128×60	554(+1/-1) x 123(+1/-1)	7.3	50020000000429
5.245 AISI316	5	120 x 60	662.5 x 121 x 60	865(+1/-1) x 123(+1/-1)	8.7	500000000052
5 2x6 A/SI316	6	120 x 60	793×121×60	795(+1/-1) x 123(+1/-1)	10.3	5000000000000
5 2+2x1 A/S/3%	-2	120 x 60	140.5 x 232 x 60	143(+1/-1) x 254(+1/-1)	4	5500000013039
\$ 2+2x2 AISI316	-	120 × 60	271×242×60	275(+1/-1) x 244(+1/-1)	8	106853
5 2+2x3 AISI316	6	120 × 60	401.5 x 242 x 60	404(+1/-1) × 264(+1/-1)	0.5	113296
S 2+2x/4 AIS(5)6	8	120 x 60	532 x 242 x 60	534(+1/-1) × 244(+1/-1)	15	113286

trus	Appellation de marrier	Reproduct de saledo (fron)	Omeraniya otarisa Areabili (mm)	Darrignomen-du poertura Arjesti Immili	P-Pd	M remark
Saciosiii.	((0	100 (00)	(403×795×40)	pages/rich watering	3#1	600400000001
GAG ANIFE	28	120 × 120	Z7×750×400	273(+1) / (+ M23/11 / I)	(67)	500400000000
Card Alliana	1 1	tio a 100	48.51773+40	20403/84/80-9/8	8.6	5054000000038
5-6-4 ASUN	141	136 x 120	532 x 199.5 + 60	554-17-5×90(-V-I)	94.	5004000000409
045 ARIDA	7.9	736 y 720	8625×170-5×60	4000(47/3) 4 160(47/3)	903	5004000000000
S ALE ASSESSED	(4)	130 - 120	795 = 779/5 = 60	78941 5 + 1025-51 5	11.2	BOUDOCCOUNTY
Lavati Attibii	3	D0 + D0	5455×500×60	tabjebitt e tittericht.	48	Mountain
54462 ASSN	(4.)	130 x 130	275 × 300 × 60	2730-10-0 × 540-0 (1)	36	550000000000000
54-43 A000	1.00	120 × 120	401.3 × 335 × 40	40401/11+30(4)/11	141	510000000078
CAMMAGGE		T/0 x 120	5.0 4 855 4 65	55997/(1) SBHV (I	869	350000000000000000000000000000000000000
5 9-96 AG(5)6	161	136 x 120	6625×509×66	605(n):0.x30(n)2-()	200	310000000001177
HERADINA .	11	tio coo	790 x 559 x 60	7556V-01030H-010	266	550000000458
s ed warte.	1 1	90×10	110.5 x 238 x 60	5607-1134067/11	184	600000000
e/2.Affidis	. 2	D0 x 385	278 x 208 x 611	250+0/-0 x 340+0/-1]	56	3006000000000
GAS ASSESS		100 x 180	600.5-x 2000 x 600	104-101-242-V-0	20	300600060033
HARMEN	140	E0.x383	582 t 289 t 60	SSAP-E-11 + DAID-V-II	30	5006000000000
CRASS ASSESSED.	.5	120 4 360	9825 V39 F6X	18859 H 17409 V (I)	- 2	506000000000000000000000000000000000000
5 6v6 A10076	(6)	120 x 190	790 x 239 x 60	9960+N-11 + 3400+V-16	142	50060000000628
C-6-6/7 X25/516		100 e 100	1405+466+60	145(40/1) + 465(47/1)	(58)	(0000000000000)
CO-612 NUTS	1.60	100 × 100	25 - 05 - 60	270(4) 10 (2000) 11	111	5006600000000
GHES ACRES	1.6	100 × 345	400 S = 420 = 400	adapte (palatector)	168	5000000000000
G G-GALAZSISHE	79.0	100 x 100	\$32 x 476 x 60	\$34-V-II x 400-V-II	39.0	5000000000421
GENERAL SERVICE	10	120 x 100	9635×476×60	660(vV) // × 47((v) V - (t)	243	5006600000001
S RANGE ACTION	- 4	580 x 360	755 1 470 1 50	PROPERTY STREET	204	500000000000000000000000000000000000000
Hticknes	191	120 x 240 "	140.5 x 250 x 60	MSHV-0 x 3000+V/h	39	5000000000000
PROMOTE	(3)	720 y 240 '	271 x 258 x 60	2790 V-1: x 3000 V-1:	86	6006000000000
3-8x3-4(1)(FI)	1	1001240	107.5 x 298 x 60	404(4)-前上300(4)-前	42	60.600.0000)
SBriallide	741	100 x 240	500 a 250 x 641	5540-1/10 x 5000-1/10	104	1009000000000
HDIN 268	6.1	226 x 240	9635 x 598 x 60	(644-0-1000-V-I)	362	5006000000000
PERMANEN	101	130 / 240	793 x 200 x 60	295(+V-1) x 300(+V-f)	364	5000000000000
Lewis vulte	5.	120 1240	1813×506+60	144-V-11 - 500-V-11	- +	5006000000035
58-92 ASSS	141	320 x 240 .	27 x 996 x 65	2750-1/-0 × SBEG-V-III	200	\$50000000960
DEPARAGE	4	720 (240	4015 × 506 × 60	904(-1/-0) × 500(-1/-0)	7708	\$500000000000
Selectable.		300+340	532 x 536 x 60	\$140-9/-Ti = 1000-1/-Ti	72.6	\$5000000000000

Aluminio

Titulo	Aperturas de macos	Especio útil de selledo (mm)	Climanoiones externas AnvAhrD (hum)	Dimensiones do abertiza AniAl (mm)	Reno (kgt)	N° de art.
5-2x1-ALU	40	120 x 60	140.5 × 121 × 60	143(+1/-1) × 123(+1/-1)	0.0	S002000000031

from	Apertures directors	Beaco (H) m-	(Americans erosmis Anathall exem)	Dimensiones de plaintaire Acedi (mm)	Place Style	fl.*de int.
120 40	- 4	130 x 60	28 x 125 + 160	273(1)-113 128(1)(1)	13:	301000000000
i servicio	- 1	100 x 60	405.5 s 700 + 600	9040V H 4 1231-3-15	ťέ	sociococcasi
854AD)	197	105 x 60	332 x 521 + 60	\$54+1/-0×120+1/-0	24	500000000000
12640	- 6	555×600	INC \$117.100	688/978 × 128/97 (S	-	500000000EE
826AU	1001	300 (60	793 x 325 x 60	255(+1/-(t+125(+1)-1)	55	socooccodi
8 D-DV ALL	- 23	200,460	1403 ± 232 ± 60	HRM/1/11×35H/1/11	18.	B00000000000
53-50AU	4.	130 x 60	25.000.00	220/1/11/2004/1/2	210	113-49
EDMONU)) m)	100 440	-3011 y 252 x 60	404(+1)-)) + 264(-1/-1)	4	113-481
S2-2mALC	W .	230 x 60	152×242×00	Start/ Sylvering	li.	TOWN:
ENDAN	14	100+100	340.6 x 179.5 x 461	1400-16-th Report II	Ni.	500400000000
942 AU	:4	190 (100)	27(4)29(5)×60	275/17/17/182(-17-1)	160	500400000000
SARAU	3.	200 4 550	4541784140	HINE H. 1000 A.	23	\$56×00000055
5-6-6-603	143	100 x 700.	SIZ x 759.5 x 60	\$5440/49-700/47	19	30040000004I
8-46-AU/	9.	100 + 120	96633 CTEEX 90	######################################	346	E304000000831
SHEALU	7.67	220 s. 120	984793460	2mas/-namedat/-s	43	500400000065
Egipti (A.L.)	(9)	200 (390)	3400 x 340 x 00	149/97-II × 890/17-II	101	(00++0000TTI)
1 mod ALL	1.0	700 e 170	29 (200 x 00)	2784// To WHY/ T	52	100w0000000
Link Deried	- 4	100 x 100	40% x 399 x 66	304/1/18×300/1/16	145	500440000033
144440	190	100 (100)	552×300 × 60	\$\$440-0×30009-0	3.6	300440000481
SAMMALL		200 s 580	3825 x 20 x 30	688(10-0) x 900-0-0-	94	188
BANKALO	161	100 < 100	750 x 355 x 40	29915-0+3(0+0:0	(044)	10304
9 N/ A(A)	1	ISO x 580	1415±4555400	14847-0 + 2400-0 0	G.	1001000000000
SEASALL	181	130 x 180	25.236.460	279/47-11 x 3400-17-11	iir.	50000000000
11 (n/E MO) /	(4)	(20.×160	4055 x 236 x 60	404/31/31/240(10/4)	3.0	000000000000000000000000000000000000000
SHOW.		DD + 100	152×256×00	steem in property	14	20000006
Shiskly	. 6	100 - 100	6625 x 256 x 00	1000040/15+240040/16	44	(00000000000)
5.665ALH	1.5	100 x 100	755×230×60	M647-912404V-9	49	500600000062
SHEARS.	1 1	120 y (46)	540 5 y 100 y 100	Mary Strames St.	25	50000000000
88-6(24(1)	7,61	120 x 160	25 x 406 x 60	2000-16-15 in 4000-16-15	216	100000000000
164943 ALL:	6.	100 k 100	4211-425-400	HOMEST CONTRACTOR	- 53.	100000000000000000000000000000000000000
Sistera de la compansión de la compansió	1.0.0	100 a 186	121 x 420 x 60	Sheet/-Exister(I-I)	1.68	(00000000000000000000000000000000000000
E STRUK ALC:	90	DD = 989	9623 x x/5 x 60	600(477-1) + 479(417.1)	62	900000000000
Seems and	-	00 (100)	90 x 476 x 60	2007-31-000-5-5	97	20000000
184 AN	761	U0+340	Hd5 x 290 x 00	1400/1/(Ex 3000/1/1)	1,00	909900000000000000000000000000000000000
TREAU.	147	120 x 240	25 x 296 x 65	(800+1/-1) × 3000-1/-1)	22.	500000000000
State Auto	. 3	00+340	40.1 (200 (10)	444-17-14-306-11-5	1	y/decreesed/
Edward Co.	1(4)	100 - 340	- E82×296×60	(34)-(-1) v.800(-1/-1)	1.0	500000000000000
186 MJ	5.	00 x 240	0023 + 200 + 00	4000-0-0-0004-0-0	97	EXX0000000031
Chatchia	1.0	DD x 360	761 x 200 x 60	Met V-B c Booth ti	lik.	interconnecti
ii Britin (ALL)	3	00+340	1463 × 986 × 00	TANKS N/10 < 000(1977)0.	260	90000000000000

EFINO	Apertures de marços	Enpacio útil de sellado (min)	Dimensiones externos AniAND (mm)	Dimensiones de abertura Ara Al (mini)	Pesa 94ge	N°dean.
5848/2 ALU	4	120×240	27) x 596 x 60	273(+1/-1) x 596(+1/-1)	44	5500000007844
5 8+8×3 ALU	6	120 x 240	401.5 x 596 x 60	404(+1/-1) x 598(+1/-1)	62	5500000000000000
S B+Bx4 ALU.	8	120 x 240	532 x 596 x 60	534(41/-1) x 599(+1/-1)		113596

MARCO ROXTEC GKO

El Roxtec GKO es un marco de metal con ala con secciones atornillables. Las secciones del marco se atornillan para crear distintos tamaños y combinaciones de aberturas. El marco sobresale de la estructura para poder atornillarse en múltiples aberturas o en aberturas irregulares. Es apto también para la instalación en cables y tuberías existentes.

- Se ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa
- Adhesión por atornilladura

Acero dulce galvanizado

Titulo	Peso (kg)	N.* de art.	
CKO LONG SIDE SIZE 2 CALV	1.5	134821	
CHO LONG SIDE SIZE 4 GALV	19	124822	
CKO LONG SIDE SIZE 6 GALV		104523	
CHO LONG SIDE SIZE 8 GALV	2.5	124624	
CKO MID WALL SIZE 2 GALV	1,5	124525	
GKO MID WALL SIZE 4 GALV.	1.8	134526	
GRO MID WALL SIZE 6 CALV	ž.	124627	
CKO MID WALL SIZE B CALV	22	12/628	
CIKO SHORT SIDE CALV	Ť,	124529	

Acero inoxidable

Titulo	Peso (Hg)	N" de art.	
CIKO LONG SIDE SIZE 2 AIS/316	135	121229	
CKO LONG SIDE SIZE 4 AISIBI6	(a)	101284	
CHO LONG SIDE SIZE 6 AISIBI6	1:5	521286	
CKO LONG SIDE SIZE 8 AISBIG	28	121296	
CKO MID WALL SIZE 7 AISI386	14	121304	
CKO MD WALL SZT 4 APS/36	1.7	121313	
CKO MD WALL SIZE 6 AREIDS	ta .	121314	
CKO MO WALL SIZE 8 AISIZIG	22	121315	
CKO SHORT SIDE AISON	12	121293	

MARCO ROXTEC GH BG™

El marco Roxtec GH BGTM dispone de conexiones a tierra integradas para simplificar la conexión a una puesta a tierra. Tiene orificios preperforados y un ala de tamaño estándar para una atornilladura sencilla a estructuras uniformes. Permite maximizar la cantidad de cables/tuberías al tiempo que minimiza el espacio de entrada. El marco de acero rectangular puede utilizarse con el marco de extensión GE en acero galvanizado para paredes / suelos más gruesos.

- Se ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa
- · Adhesión por atornilladura a paneles sándwich o de acero

Acero dulce galvanizado

Titue	Aperturies de mercos	Especio VIII de sellado (mm)	Demensiones externés 4/vAlirD (mirri)	Drostsiones de sterture Are/N prons	Perso Siggi	N° de art.
CHBC 2H GM/V	3.	20 + 40	252.5 × 203 × 91	148(+5)-5) x 128(+5)-5)	16	102566
OHBO 2/2 GALV	2	120 x 60	368 x 283 x 98	1799+0/-9) A 1290+5/-5(62	122569
CH8C3/5G4LV	ji ji	720 × 60	503.5 + 233.×95	1200+12-50 ± 1200+12-50	0.5	102570
CHBC 2W GALV	*	100 x 60°	644×253×10	539(+5/-5) + 139(+5/-5)	103	102519
GH90 24 GALV	3	120 ± 60	2945 + 255 + 92	690(+5/-5) x C86(+5/-5)	tis	(2302)
CHBC 246 GALV	ж.	120 × 60	906×231×90	800(+\$/-5) e 1280-6/-5)	1,168	125679
CHRC 2-24 GALV	3	100 x 60	2025 x 364 x 98	(40)(452-52.H. 344(467-6)		(000%)
CHBC 2-242 GALV	3	126 x 60	303×346×39	24(+5/-5) + 24(+5/-5)	92	102579
CH BC 24243 GALV		120 x 66	935+344+95	409(+5/-5) x 247(+5/-5)	62.5	62500
CH80 2*24 GALY) B.	120 x (iQ	544×546×10	589(-5/-5) × 349(-5/-5)	64.0	icosan
CHIEC 2-24 CACH	160	220 x 40	7945 i 346 x 98	(50(+5/-5) s 240(+5/-5)	999	123562
0H802-2664LV	702	126 x 60	305 x 340 x 92	900(+\$/-\$) x 240(-\$/-\$)	22.9	122563
CHBC NFGAV	j	190 x 190	2925×205+98	140(+5/-5) + 160(+5/-5)	- 44	10007
CH BC 4/2 GALV	2	00 x 520	365 x 2915 x 92	276-5/-5/x 905-5/-6	8.9	nouse

1,5

hituates	Apertures to marcos	fisperoe stri de sellado (mmi	Dimensiones externos Arcohilo (mm).	Dimensiones de abenura Anold (mm)	Davis (mgl	NCT do set.
OHEG AGENLY	17	.tae x tao	\$15.5 x 291.5 x 98	40%-5/-5(*) 1878-5/-5(92	122599
CH RD 444 CALY		100 x 100	644×255×10	\$39(+\$7-5) + 107(+\$7-5)	M.	1521.00
DHBG 46 GALV	- 6	190 x 1361	2945 × 2015 × 93	620(+5/-5/ s 385+5/-5)	13.5	122500
CH BC 446 GALV	161	190 x 190	905 x 254.5 x 90	800(+M/S) + 100(+S/-S)	167	town
CHRO MERCALV	- 33 II	100 s 100	252.5 x 467.4 (Q)	\$46(+5/-5) a. \$50(+6/-5)	72	120606
OH BG 4-9/2 GALY	4/	130 x 130	301+43+93	2776(+5/-5) + 2588+5/-5)	106	120006
OHRO HAS GALV	7.60	CAD A 100	3155×465×35	1000(+3/-5) + 356(+5/-5)	968	10007
OH BO 4+464 CALV	160	156 x 150	694 x 463 x 83	599-57-51 x 354-57-51	166.2	122000
CHEC MAIS CALV	10;	120 x 190	7945 x 963 x 90	6750; 5/-5; = 350(+5/-5)	200	122600
CHIEG AHAS DALV	142	136 x 136	905 x 463 x 93	800(+\$/-\$) + 350(+\$/-\$)	29	120010
OHEC (vi) CALV	107	120 x 180	262.5 x 360 x XII	1489-57-53 x 2456-57-58	56	10060+
CHIIC BUZGALY	2	136 x 180	363 x 350 x 93	290+5/-5) × 245(+5/-5)	25	110003
OH BG 6/2 GALV	E.	120 x 186	913.5×380×98	409(-1/-5) V 246(-5/-5)	104	HOORS
SH BO 6W SALW		130 x 1861	644×350×31	539(-52-5) x 245(+52-5)	147	(006.05
CH BG 6/5 GALV	S	100 x 100	774.5 x 350 x 93	970151-51 a 2401-51-51	163	129627
CH BC 66 GALV		130 × 100	905 x 350 x 93	900(+5)-5(x 245(+52-5)	104	120438
CHEC CHEC CALV	ı	126 × 166	852.5 × 570 × 93	1481-57-53 x 4751-58-59	2.0	100632
CH BO GHEAZ GALV	4:	120 x 190	363 x 560 x 10	278(+5/-5) s 475(+5/-5)	13	110033
DHBG EHES CALV		136.x l66	5935×580×90	475(*5/-5)	10.5	109600
CH BC 6-6H CVIV	100	790 x 100	644 x 580 x 50	839(+5/-5) + -425(+5/-5)	22	110492
CHIRC BYEIG GALY	10	100 x tes	774.5 × 500 × 98	6700-12-57 s 4701-57-5]	36.6	1135-6
CH BG 6+G/6 GALV	(10:	100 x 100	905 × 585 × 98	(KXX)(+3/-5) + 475(+5/-5)	30	120633
CHROWN GALY	6	130 x 240	2525 x 620 x 93	6487-57-57 v 3050-57-5)	5.2	121224
OH BG BG GALV	ž.	120 x 340	588 x 40 x 95	278(+1/-5) x 305(+5/-5)	8.6	(16066
CH HC 0/2 CALY		130 e 240	515.5 x 410 x 103	400(+5/-5) 4 305(+5/-5)	, sa	110088
CH RG RIM GALV		120 x 240	664 40 x 30	539(+5/-5) x 305(+6/-9)	166	100544
CH HIC BIS GALV	F	120 x 240	774.5 x 440 x 10	670(-5/-58 t) 30(4-5/-5)	162	163021

Thây	Aperican de merces	Emmiss 407 ner sections (evits)	Omirejones enternés Aradisto (mas).	Omersione ill alterture Anni (mm)	Den Sig	Non-ex
DHRC Set EALY		130 + 240	905 + 60 + 10	800(-5/-5) ± 305(-5/-5)	Min.	COMMO
CHRC 6-04-CALY	3	100 x 240	252.5 x 990 x 313	540-5/5/4 990-5/5/5	84	123600
CHRC B-662 CALV	9 1	59 x 240	30.490.430	270(%)-5) x 50(0-5)-5;	(40)	Occas :
DHRCR-BOSAN	4	100 x 240	825-200-98	400(15/-5) = 100(15/-5)	228.	(250)
OHER-MICAL		30 + 240	BALK TO CH	550+5/-5(+ 560+5/-5)	25.4	COMPT
CHIIC OHNS SALV	30	D0 ± 340	7745 x 700 x 01	9705-51+ 395-515	(9.)	(22800)
CHIED-DECAY	-14	100 x 2x0	100 x 700 x 101	2009-5/-5/-6 2009-5/-5/	QT	Cones

Acero inoxidable

Than	Aparturas de mercina	franco (A7 etc.) princip (hero)	Conventiones externes Analysis (mind	Orrentionecus stertura Anual (Yvn)	Preida	Nº Marin
DHIC SHANIFIN	1	100 + 60	303 420 400	1401-SI-SI+ 1201-SI-SI	200	100489
DYRC 20 ASSETS	9	1871-60	961 × 253 × 65	230°0/5) + 1390'5/-6)	87	CSMI
OH 8G 3A) ASSON		100 × 60	101/2011	109/5/5)	39e.1	(02462
CHIEC 244 AND SHE	14	190 x 60	666 x 207 x 99	550(+5/-5) y 100(-5/-5)	50	COMES
DHR0 34) ACCRE		307 × 60	#H4×200×00	400-6-5-4 400-6-4	100	1044
OH 80 345 AIS (916		100 × 00	1605 × 255 × 95	600(ns/-5) q (28/-5/-5)	190	120406
OH 80 3-24 MS/SE.	9	100+60	7523 × 566 x 93	166-57-0 x 240-57-0	54	122400
DI NO 2/2/2 MUSE.	3	125 × 60	585 546 (15	200(+M-5) s, 200(+5)-5)	47	(2)40
OH 80 3-33 AM (08		100+00	88.5×346×95	40(4) Se 30/V/S	0.6	120/42
OHIO JONANGON		190 + 60	64434533	639+1/-51 x 240-5/-52	962	(224/3
CHIRO 34041 ARIEM	*	10+40	Make belond	490+91.8 s 340-91-0	MA.	CDMIN
OH RO 3-246 ASSSE	25	100 + 60	105 x 346 x 51	9009-97-61 x 340-57-61	24	(22466
OHIC MEASURE		100 x 100	2623 + 2015 + 88	340/5/-0; e 300/5/-0;	-4	town
DHIC 42 AREA	- 14	139.x130	30×303×01	2000-16-00 × 1003-56-01	44	nome
CHIIC 41 AVJIII	3	130 x 100	\$155 × 201 § + W1	4000-57-52 × 1000-57-53	78	TAVES
CH 80 64 853%	3	190 x 190	644 K 291.5 × 613	\$89-\$/-\$) = 389-\$/-\$	10	(3348)
DVBC 45A600		131 + 150	2965129518	670H5/-62 x 1805-52-61	16	COMM

New		===	H-money more reproductive	-	the bit	5.00
	10	0.00	300-300-rife	200711	787	200
	1.0	ment :	interests.	100 (10)	1.4	limit i
	D.	100.00	m-m-0	790-0191 199-916	- 4	-
		30.90	-1001-00100	200 4 A		tens :
-	7.4	1944	Salation in	300 d a 1		(feet)
0.00	(6.	200	marane	Brown A	- 10	(694)
	1.00	00100 L	DO HOUSE	Mary St.	94.	tree :
paven.		0.79	delivered	100.000	100	-
	- 1	3000	W-170-01	Special Control	360	-
-	P. 1	100	100/9016	100 miles	99	nam'
			-	200 C	.99	-
	1012	limited (750736116	VALUE OF L	-	-
DE SERVICE	((0))	30.00	(8410019)	BOYELSA PROSESS	790	tions)
-	7.		300109100	100 T T	- 100	-
	100	101.00	-	2004	. 3	-
	(6)	70 (46 °	********	40010-01	-	-
	1.61	201/00	-	200 As 100 AS 10	7	-
	- 4-	9-9	Act about	100 C C	84	-
	CWT	36.00	(800) (800) (60	960 P St.	140	-
-		m-re		Dist.	(96)	-
weH==		more	Market 10	Medica.	*	-
	1.0	mi+4	2001-05100	400-01-0-1 040-01-0-	210	-
	10.0	20120	F0-170170	EDGW/SLA (PR/SC/SC		-
	7.	-	THE STATE OF	200 0 4 s 000 0 0		-
	1/41	200	TRANSPORT IN	\$600.00 \$600.00	40	-
-	10):	10.00	(0.000000)	100 K S +	166)	teer
	100	39'016	M-(2010)	700 G	(94)	line :

True	Aportures de marcos	Especio (E) de ustado (mm)	Dimensione edems AnsAbD (mm)	Direction on ohi alantura Arould (mm)	Peso (vg)	nemate
CH DC 8-0x3 ABIDS	101	100 x 240	5/3.5 × 900 × 93	4090-57-58+ 5060-57-58	20	120540
CH SC 8+844 ASSESS		120 x 240	644 x 700 x 10	\$39(-\$/-\$) a 395(-\$/-\$)	26	112850
CH BC 8-66 ASSIN	id.	120 x 340	7945 x 200 x 95	\$964-\$7-\$1.9 \$204-\$7-\$1.9	39	122981
CHRIC BHRIS ANSISTE	in .	120 x 240	908 x 700 x 98	000(-\$7-\$) » 898(-\$7-\$)	142	15568

MARCO ROXTEC FLAMEPLUS™ CON EXTENSIÓN

El marco Roxtec FlamePlus™ con un ala ancha y un marco de extensión se fija a la estructura de la pared mediante atornillado. El material compuesto ligero permite que que no tenga corrosión, que no sea magnético y resulta adecuado cuando interesa reducir el peso mínimo. La placa extraíble mantiene la abertura hermética durante la fase de construcción y con posterioridad. Una vez extraídas e instalados los módulos, forma una instalación completa resistente al fuego.

- Material compuesto
- Diseño modular
- Instalación por atornillado

Titulo	Aperturus de marcos	Espacio útil da sellado (mm)	Olmensiones externos AnxAlxD (mm)	Dimensiones de oberturo AnxAi (mm)	Paso (kg)	M.* de crt,
FLAMEPLUS 641 WITH EXT. FRAME	,,	130 x 180	331 x 433 x 310		5.6	273905
FLAMEPLUS 6x2 WITH EXT. FRAME	2	120 x 180	487 x 433 x 310	351 x 297	8.4	223806
FLAMEPLUS 6x3 WITH EXT. FRAME	3	120 x 160	642 x 433 x 310		164	223807

PASAMUROS ROXTEC R

Sello redondo para sellar alrededor de varios cables y tuberías en una zona limitada.

El Roxtec R es un sello para cables y tuberías para el uso en collarines de tuberías u

orificios redondos. El marco del sello integra compresión, para sellarse por la

expansión. Los módulos de sellado estándar se adaptan a diferentes tamaños de

cables y tuberías, y se pueden utilizar para incorporar capacidad de repuesto en el

sello. La red de la parte posterior protege durante las instalaciones horizontales (no se

incluye en las variantes R 70 y R 75). El marco se puede abrir con corte para facilitar la

instalación en torno a cables o tuberías existentes.

- Calificación contra incendios
- Estanco a gases
- Estanco al aguaEstanco al polvo
- Eficiencia de área
- Fácil de mantener e inspeccionar
- Sometido a prueba de vibraciones

Calificaciones y certificados

Fuego

CLASE A de acuerdo al estándar FTP IMO 2010

CLASE H según el Código IMO 2010 FTP+ curva de carga de fuego HC

Clasificación E/EI según EN 1366-3

Clasificación E/EI según EN 45545

Clasificación F/T según UL 1479

Estanquidad


Gas: 2,5 bar (catastrófico)

Agua: 4 bar (catastrófico

Tipo de montaje

Dimensiones del marco

mm/kg

Las variantes de marcos que figuran a continuación sen una selección limitada. Para vertra gama compreta de marcos y configuraciones, visite mores com-

Titule	Expecto VIII de cellede	Dimensiones de aberture	Pero	R." de ort.
R SC AISITIE	30 x 30	60 - 83	0.21	\$800000012875
875 AGUM	40 ± 40	75-77	0.9	8000000755021
R 70 AISIB16	40 x 40	70 - 72	0.45	8000000701021
2 100 AISSIL	60 x 60	105 - 107	.0.0	9000000000001
R 100 GALV	60 x 60	100 - 102	0.6	R00000000000
R 125 AISI316	80 x 80	125 - 127	11	R00000125/021
R 125 GALY	80 x 811	525 - 127	11	Appoposizations
R 127 A/S(316	80 x 65	127 - 129	11	8000001271021
R IZT GALV	\$0 x 80	107 - 129	30 -	A000001271018
R 150 A/301%	90 4 90	150 - 152	16	B000000901001
R 199 GALV	90 ± 90	190 192	361	R0000001501018
R 300 A19:316	130 + 130	200 - 203	2.6	8000003501021
R 200 GALY	120 x 120	200 - 202	7.6	8000002009018

MARCOS ROCTEX HD

El marco del tránsito de cable Roxtec HD está diseñado para aplicaciones de alta densidad de cable en entornos duros y peligrosos. Está fabricado en acero inoxidable 316L.

To be used with Roxtec HD modules to form a complete sealing solution

Acero inoxidable

Título	Aperturas de marcos	Espacio útil de sellado (mm)	Dimensiones externas AnxAlxD (mm)	Dimensiones de abertura AnxAl (mm)	Peso (kg)N	.° de art.
HD32 FRAME ASSEMBLY AISI316	24	0 x 1601	30 x 236 x 60	110(+1/- 0.5) x 216(+1/- 0.5)	2.31	09238
HD16 FRAME ASSEMBLY AISI 316	14	0 x 1608	3.8 x 236 x 60	64(+1/-0.5) x 216(+1/-0.5)	1.61	93084

MARCOS ROCTEX CF 16

El Roxtec CF 16 es un marco de metal de perfil bajo. La unidad de compresión está integrada en el marco

- · Se ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa
- Adhesión por atornilladura
- Disponible en kits
- Disponible en acero dulce en polvo revestido o en acero inoxidable AISI 304
- Placas de adaptación disponible

CF 16 FRAME

Acero dulce con revestimiento de polvo

Título	Aperturas de maicos	Espacio útil de sellado (mm)	Dimensiones externas AnxAlxD (mm)	Dimensiones de abertura AnxAl (mm)	Peso (kg)N	.° de art.
CF 161		40 x 160	93 x 234 x 427	1(+1/-1) x 187(+2/-0.5)1	.4	CSF0000160010
CF 16 OPEN	14	0 x 1609	3 x 234 x 42	71(+1/-1) x 187(+2/-0.5)	1.4C	SF1000160010

Acero inoxidable

Título	Aperturas de maicos	Espacio útil de sellado (mm)	Dimensiones externas AnxAlxD (mm)	Dimensiones de abertura AnxAl (mm)	Peso (kg)N	.° de art.
CF 16 AISI3041		40 x 160	93 x 234 x 427	1(+1/-1) × 187(+2/-0.5)1	.4	ECF0001600021
CF 16 AISI304 OPEN	14	0 x 1609	3 x 234 x 42	71(+1/-1) × 187(+2/-0.5)	1.25	CF0000004946

MARCOS ROCTEX CF 8/32

Los marcos de sello de entrada Roxtec CF 8 y CF 32 están fabricados en aluminio fundido. La unidad de compresión está integrada en el marco

- · Se ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa
- Adhesión por atornilladura
- Disponibles como kits completoPlacas de adaptación disponibles

Aluminio

Título	Aperturas de marcos	Espacio útil de sellado (mm)	Dimensiones externas AnxAlxD (mm)	Dimensiones de abertura AnxAl (mm)	Peso (kg)N	.° de art.
CF 81	1	40 x 807	5 x 140 x 60	61(+0.5/-0.5) x 127(+0.5/-0.5)	0.6C	SF0000080035
CF 32	24	0 x 1601	30 x 230 x 60	110(+0.5/-0.5) x 216(+0.5/-0.5)	1.4C	SF0000320035

MARCOS ROCTEX ComSeal™

El marco Roxtec ComSeal™ es un marco ligero con eficiencia de área para armarios. Se utiliza con módulos de sellado que se adaptan a cables y tuberías de distinto tamaño.

- S e han diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa
- Disponible en aluminio fundido
- Para su instalación dentro o fuera del armario
- Disponibles como kits completos

Aluminio

Título	Aperturas de marcos	Espacio útil de sellado (mm)	Dimensiones externas AnxAlxD (mm)	Dimensiones de abertura AnxAl (mm)	Peso (kg)N	.° de art.
COMSEAL 10 FRAME ASSEMBLY	14	0 x 1008	0.5 x 173 x 55	56(+1/-1) x 149(+1/-1)	0.34	105300

MARCOS ROCTEX ComSeal™

El marco Roxtec ComSeal™ EMC es un marco de sello de entrada de cables para uso en aplicaciones EMC. Está diseñado para aplicaciones industriales y de telecomunicaciones, como convertidores, generadores y armarios. El marco es de aluminio niquelado. Se usa con módulos de sellado adaptables para protección contra EMI.

- · Para usar con los componentes de Roxtec correspondientes para formar una solución de sellado completa. Se dispone de
- versiones para ecualización de potencia y blindaje electromagnético
- Disponibles como kits completos
- Permite el uso de cables preacabado
- Disponibles como kits completos

ComSeal 32 ES

MARCOS ROCTEX ComSeal™

El marco Roxtec EzEntry™ simplifica el sellado de cables en armarios y envolventes. El marco compuesto está hecho para la instalación en un solo lado.

- · Para usar con los componentes de Roxtec correspondientes para formar una solución de sellado completa Disponible en
- tamaños desde 4 hasta 32 cables
- Unidad de compresión integrada
- Permite cables preacabados
- · Versiones disponibles para la cubierta extraíble FL 21 y cubierta extraíble de 24 conectores de múltiples terminales
- Disponible con cerraduras de acero inoxidable a petición para satisfacer los requisitos más exigentes de entornos más
- corrosivos
- Disponibles en kits completos

Roxtec EzEntry™frame

Composite

Titulo	Aperturas de marcos	Especio-útil de sellado (mm)	Dimensiones externas AnsAlxD (mm)	Peso (kg)	N° de art.
EZENTILY 4 MINI FRAME ASSEMBLY	1	40 x 40	76×76×24	0.08	E200044000000
EZENTRY 4 FRAME ASSEMBLY	1	40 x 40	70 x 97 x 31	0.28	EZ00040000000
EZENTRY 10 FRAME ASSEMBLY	1	40 x 100	70 x 168 x 31	0.27	EZ00010000000
EZENTRY 16 FRAME ASSEMBLY	1	40 x 160	90 x 238 x 34	0.46	E200016000000
EZENTRY 16 COUNTER FRAME				0.24	2CV0000000006
EZENTRY 24 FRAME ASSEMBLY	2	40 x 120	90 x 325 x 40	0.7	E200024000000
EZENTRY 32 FRAME ASSEMBLY	2	40 x 160	90 x 405 x 42	0.9	£200032000000

MARCO ROXTEC R UG™EMC

El Roxtec R UG™ es un marco que permite mezclar cables y tuberías de 4 a 52 mm en la misma abertura.

- Se ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa
- Para múltiples cables / tuberías

R 100 UG

Título _	Espacio útil de sellado (mm)	Dimensiones de apertura Ø (mm)	Peso (kg)N	.° de art.
R100 UG	60 x 601	00 - 102	0.81	56872
R142 UG	80 x 801	42 - 144	1.72	13493
R150 UG	90 x 901	50 - 152	1.91	08693
R 200 UG	120 x 1202	00 - 202	3.11	08698

D.2

SELLO ROXTEC RS UG™

Sello redondo para cables y tuberías individuales con entrada por cimientos. El Roxtec RS UG™ es un sello de dos partes que se instala en cables o tuberías individuales con entrada por cimientos. Actúa como barrera de larga duración frente a inundaciones, gas, humedad y roedores. El sello puede instalarse en condiciones húmedas y entornos con agua corriente. Resiste una flexión de cables extrema y tiene una tolerancia de +5 mm hacia la abertura y un indicador muestra cuándo se ha comprimido el sello. El sello se puede instalar en collarines, conductos y en agujeros perforados.

- Estanco al agua
- Resistente a roedores
- Rápido y sencillo de instalar

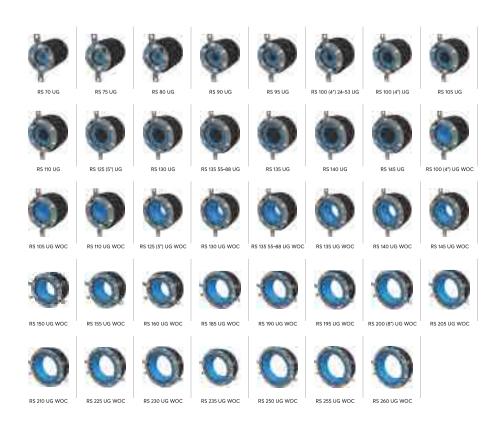
Calificaciones y certificados

Estanguidad

- Gas: 0,3 bar (constante)
- Agua: 0,3 bar (constante)
- IP 68

Datos de los componentes de sellado

Componentes de sellado



Se**ll**o RS UG™

Datos de los componentes de sellado

D.3

SELLO ROXTEC H3 UG™

Sello para cables con entrada por cimientos.

El sello Roxtec H3 UGTM es idóneo para cables con entrada por cimientos y actúa como barrera de larga duración frente a inundaciones, gas, humedad y roedores. Es un sello de tres partes de fácil instalación y puede instalarse en condiciones húmedas y entornos con agua corriente. El sello resiste una flexión de cables extrema y tiene una tolerancia de +3 mm hacia la abertura y un indicador muestra cuándo se ha comprimido el sello. El sello se puede instalar en collarines, conductos y en agujeros perforados.

- · Estanco al agua
- Resistente a roedores
- Rápido y sencillo de instalar
- Ofrece una sujeción excelente de los cables

Calificaciones y certificados

Estanquidad

- Gas: 0,3 bar (constante)
- Agua: 0,3 bar (constante)
- IP 68

Datos de los componentes de sellado

Componentes de sellado

Lubricante Roxtec

Se**ll**o H3 UG™

H3-200 UG

H3-135 UG WOC

H3-150 UG WOC

H3-185 UG WOC

Datos de los componentes de sellado

MÓDULO ROXTEC RM CON MULTIDIAMETER™

Los módulos Roxtec RM miden 60 mm (2,362") de profundidad y se adaptan fácilmente a cables y tuberías de diferentes tamaños. Si se usa con un núcleo central sólido, el módulo sirve de módulo de reserva de capacidad para el futuro.

- S e ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa
- Para cables y tuberías con diámetros exteriores de 3,0-99,0 mm (0,118"-3,898"

)	RM15	RM15w40	RM 20 w 40	RM 60	RM90 WOC

Titulo	Dimensiones externas AnxAlxD (mm)	Número de cables/tuberías	Para cable/tubería Ø (mm)	Peso (kg)	N° de art.
RM 15	15 x 15 x 60	1	3 - 11	0.02	RM00100151000
RM 15w40	40 x 15 x 60	3	3.5 - 10.5	0.05	RM00115401000
RM 20	20 x 20 x 60	1	4-145	0.04	RM00100201000
RM 20w40	40 x 20 x 60	2	3.5 - 16.5	0.07	RM00120401000
RM 30	30 x 30 x 60	1	10 - 25	0.08	RM00100301000
RM 30H90	30 x 90 x 60	1	10 - 25	0.25	103915
RM 40	40 x 40 x 60	1	21.5 - 34.5	0.14	RM00100401000
RM 40 10-32	40 x 40 x 60	1	9.5 - 32.5	0.14	RM00140101000
RM 40H80	40 x 80 x 60	1	21.5 - 34.5	0.28	165313
RM 60	60 x 60 x 60	1	28 - 54	0.32	RM00100601000
RM 60 24-54	60 x 60 x 60	1	24 - 54	0.33	RM00160201000
RM 80	80 x 80 x 60	1	48 - 71	0.6	5RM0000003350
RM 90	90 x 90 x 60	1	48 - 71	0.7	RM00100901000
RM 120	120 x 120 x 60	1	67.5 - 99	1.2	RM00101201000
RM 60 WOC	60 x 60 x 60	1	28 - 54	0.26	RM00000601000
RM 80 WOC	80 x 80 x 60	1	48 - 71	0.4	5RM0000000534
RM 90 WOC	90 x 90 x 60	1	48 - 71	0.6	RM00000901000
RM 120 WOC	120 x 120 x 60	1	67.5 - 99	0.9	RM00001201000

E.1.2

MÓDULO ROXTEC CM CON MULTIDIAMETER™

Los módulos Roxtec CM miden 30 o 40 mm (1,181"/1,575") de profundidad y se adaptan fácilmente a cables y tuberías de diferentes tamaños. Si se usa con un núcleo central sólido, el módulo sirve de módulo de reserva de capacidad para el futuro.

- Se ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa
- Para cables y tuberías con diámetros exteriores de 3,5-34,5 mm (0,138"-1,358")

MÓDULO ROXTEC RM UG™ CON MULTIDIAMETER™

50 x 50 x 30

Los módulos Roxtec RM miden 60 mm (2,362") de profundidad y se adaptan fácilmente a cables y tuberías de diferentes tamaños. La versión UG se utiliza para pasamuros en aplicaciones subterráneas.

· Se ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa

CM 50

28 - 44

C000100501000

RM80 UG WOC

Título	Dimensiones externas AnxAlxD (mm)	Número de cables/tuberías	Para cable/tuberia Ø (mm)	Peso (kg)	N° de art.
RM 20 UG	20 x 20 x 60	1	4-13	0.03	116871
RM 20w40 UG	40 x 20 x 60	2	4 - 13	0.06	116870
RM 30 UG	30 x 30 x 60	1	10 - 23.5	0.06	116837
RM 40 UG	40 x 40 x 60	1	9.5 - 31	0.12	116865
RM 60 UG	60 x 60 x 60	1	24 - 52	0.28	116969
RM 80 UG	80 x 80 x 60	1	48 - 68	0.5	174929
RM 90 UG	90 x 90 x 60	1	48 - 68	0.6	174930
RM 80 UG WOC	80 x 80 x 60	1	48 - 68	0.34	177304
RM 90 UG WOC	90 x 90 x 60	1	48 - 68	0.46	177305
RM 120 UG WOC	120 x 120 x 60	1	67.5 - 96	0.9	177306

KIT DE SELLADO ROXTEC

El kit de sellado Roxtec incluye todos los componentes necesarios para sellar un marco rectangular Roxtec de tamaño 6. El kit, claramente organizado, simplifica la instalación y reduce al máximo el número de artículos. Está disponible en tres configuraciones diferentes para adaptarse a la densidad de cables y tuberías.

• Se ha diseñado para su uso con un marco Roxtec para formar una solución completa

SEALING KIT 6/26 GALV

Acero dulce galvanizado

Titulo	Configuración	Dimansiones externas AnxAlxD (mm)	Peso (kg)	N.º de art.
SEALING KIT 6/18 CALV	6x (3.5-16.5), 12x (9.5-32.5)	120 x 218 x 109	3.6	112013
SEALING KIT 6/19 GALV	2x (28.0-54.0), 3x (9.5-32.5), 8x (10.0-25.0), 6x (3.5-16.5)	120 x 218 x 109	3.6	112014
SEALING KIT 6/26 CALV	6x (9.5-32.5), 8x (10.0-25.0), 12x (3.5-16.5)	120 x 218 x 109	3.8	112021

Acero inoxidable

Titulo	Configuración	Dimensiones externas ArxAbxD (mm)	Peso (kg)	N.º de art.
SEALING KIT 6/18 AISI 316	12x (9.5-32.5), 6x (3.5-16.5)	120 x 218 x 109	3.6	112023
SEALING KIT 6/19 AISI 316	2x (28.0-54.0), 3x (9.5-32.5), 8x (10.0-25.0), 6x (3.5-16.5)	120 x 218 x 109	3.6	112024
SEALING KIT 6/26 AISI316	6x (9.5-32.5), 8x (10.0-25.0), 12x (3.5-16.5)	120 x 218 x 109	3.7	112026

ROXTEC WEDGE Y WEDGEKIT

El Roxtec Wedge se utiliza en marcos con espacios útiles de sellado rectangulares y para sellar la instalación de cables, tuberías, módulos y placas de separación. El Roxtec Wedgekit contiene todos los componentes necesarios para la compresión del sistema.

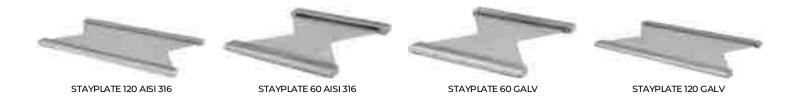
Se ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa

Acero dulce galvanizado

Titulo	Dimensiones externas W (mm)	Peso (kg)	N.° de art.
WEDGEKIT 60 GALV	60	0.8	SAWK000000283
WEDGEKIT GALV	120	1.5	AWK0001201018
WEDGE 60 GALV	60	0.4	ARW0000601018
WEDGE 120 GALV	120	0.8	ARW0001201018

Acero inoxidable

Titulo	Dimensiones externas W (mm)	Peso (kg)	N.º de art.
WEDCEKIT 60 AISI316	60	0.8	AWK0006001011
WEDGERIT AISI316	120	1.5	AWK0001201021
WEDGE 60 AISI316	60	0.4	ARW0000601021
WEDGE 120 AISI316	120	0.8	ARW0001201021



PLACA DE SEPARACIÓN ROXTEC

Las placas de separación Roxtec se utilizan para conseguir resistencia de tracción en cables y tuberías. Se usan entre hileras de módulos en marcos con espacios de sellado útiles rectangulares y unidades de compresión independientes.

Se ha diseñado para su uso con los componentes Roxtec correspondientes para formar una solución de sellado completa

Acero dulce galvanizado

Titulo	Se ajusta al espacio útil de sellado W (mm)	Peso (kg)	N.º de art.
STAYPLATE 60 CALV	60	0.05	ASP0000600018
STAYPLATE 120 GALV	120	0.11	ASP0001200018

Acero inoxidable

Titulo	Se ajusta al espacio útil de sellado W (mm)	Peso (kg)	N.º de art.
STAYPLATE 60 AISI316	60	0.06	ASP0000600021
STAYPLATE 120 AISI316	120	0.1	ASP0001200021

LUBRICANTE ROXTEC

El lubricante Roxtec está hecho de grasa natural y se utiliza para lubricar los módulos de sellado, el compresor Roxtec y el interior del marco. Esto simplifica la instalación, además de proporcionar una compresión correcta y un sellado seguro.

Disponibles dos tipos de lubricante, en función de la solución

Lubricant 25 ml

Lubricate module

Título	N." de art.
LUBRICANT 10 ML	ALT0000001000
LUBRICANT 25 ML	ALT0000003000

ROXTEC TRANSIT DESIGNER™

Herramienta online para diseño sencillo de sellos para cables y tuberías

La aplicación web gratuita Roxtec Transit Designer™ es ideal para los ingenieros de diseño que utilizan el sistema de sellado de Roxtec. Simplifica la selección del producto en función de las necesidades y de los requisitos y mejora todo el proceso de diseño, adquisición e instalación de pasamuros.

Mejore la colaboración global

Puede compartir su trabajo online de forma segura y establecer la colaboración con equipos de proyectos en cualquier lugar del mundo. Los expertos de Roxtec están a su disposición para ofrecerle asistencia en su propio idioma a través de la función de chat. Si necesita ayuda, comparta su proyecto con nosotros y le devolveremos los documentos completados.

Ventajas

- Encuentre la solución adecuada en función de sus necesidades
- · Copie y pegue sus entradas previstas de cables o tuberías
- · Obtenga piezas de ingeniería aprobadas por el fabricante
- · Reduzca el tiempo de diseño

"Al importar los datos en el software de Roxtec, ahorramos varias semanas, o incluso meses".

Gary Jennings, Jefe de diseño eléctrico de Wood Group

Herramienta de ingeniería inteligente

Puede diseñar cientos de sellos para varios cables y tuberías en solo unos minutos. Introduzca sus datos y permita que la herramienta le guíe a través de un proceso sencillo, incluye un filtro para seleccionar la solución adecuada. Gracias a los resultados aprobados por el fabricante puede generar directamente toda la documentación y garantizar una entrega eficiente a los equipos de aprovisionamiento, instaladores in situ y equipos de mantenimiento.

Introducción de datos sencilla para el usuario:

Estimaciones o inventario de cables/tuberías

Requisitos de sellado/certificación Preferencias de instalación

Tamaños de abertura preliminares Selección de calidad de materiales Resultados generados automáticamente:

Planos 2D en DXF y PDF 3D STEP

Lista de materiales en Excel Instrucciones de instalación Certificado

ROPER PUERTAS CORTAFUEGO

PUERTA BATIENTE CORTAFUEGO El260 C5 / El290 C5 / El2120 C5 - ROPER

Roper es un fabricante con una experiencia de más de 25 años en el sector de las puertas cortafuego. actualmente fabricamos una amplia gama de puertas batientes cortafuego de una y dos hojas que cubre la práctica totalidad de las necesidades del mercado. este tipo de puerta está especialmente indicado para viviendas, grandes superficies como supermercados, cines, fábricas, hospitales, salas de espectáculos, bibliotecas, discotecas, hoteles, etc. así como para cualquier otro lugar en los que se precisen unos niveles de seguridad contra incendios. es un fabricante con una experiencia de más de 25 años en el sector de las puertas cortafuego. actualmente fabricamos una amplia gama de puertas batientes cortafuego de una y dos hojas que cubre la práctica totalidad de las necesidades del mercado.

Este tipo de puerta está especialmente indicado para viviendas, grandes superficies como supermercados, cines, fábricas, hospitales, salas de espectáculos, bibliotecas, discotecas, hoteles, etc. así como para cualquier otro lugar en los que se precisen unos niveles de seguridad contra incendios.

La puerta esta formada por una hoja fabricada con dos bandejas unidas entre si y rellena mediante un papel rigido de lana de roca. Un marco adaptado a la hoja y preparado para ser recibido de albañilería.

Una cerradura con marcado CE de acuerdo a la UNE EN 12209, Bisagras fabricadas en acero de alta resistencia según norma UNE EN 1935.manilla de alma metálica forrada en poliamida de color negro y fijas en el marco para instalar en la obra.

Clasificación

Ei 60 C% ambas caras 60 minutos

Medidas de vano de obra

Ancho: 800 / 900 / 1000 / 1100 / 1200 / 1230 / 1300 mm. Alto: 2070 / 2150 / 2200 / 2300 / 2400 y 2500 mm. Para otras medidas consultar con nuestro departamento comercial.

Marco

- " STD ":
- Fabricado en chapa de acero de espesor 1.5 mm.
- Para obra rígida.

Hoja

- Fabricada en chapa de acero galvanizado y prelacada en blanco RAL
- 9010, de espesor 0,5 hasta 0.6 mm.
- Refuerzo perimetral interno en lamina de acero de espesor 2.5 mm.
- Pivote de seguridad entre bisagras anti-deformación por calor y antidesarme.
- Material aislante interior : Lana de Roca 165 Kg/m

Estanqueidad al fuego

- Junta intumescente de elevada dilatación
- Pegada en todo el perímetro del marco excepto en la parte inferior.
- Dimensiones 20 x 2.5 (ancho por espesor)
- Fabricada en base de grafito y color negro
- Flexible, insoluble e inodora
- a Factor de dilatación : 25 a 1 si T > 180 °C C5

Sentido del fuego

- -Apertura izquierda
- -Apertura derecha

Herrajes

- -Manillas: doble cara sin bombillo negra.
- Pivote de seguridad entre bisagras antideformación por calor y antidesarme.
- -Cerradura cortafuegos reversible con doble enclavamiento y resbalón de cierre entrada 65mm. Marcado CE.

Bisagras

Dos o tres bisagras cortafuegos por puerta, según medida, fabricadas en acero galvanizado. Son bisagras SIN muelle, con marcado CE, conforme al CTE.

Accesorios opcionales

CIERRA PUERTAS

Cierrapuertas de sobreponer con brazo articulado con fuerza EN 2-6 y ángulo de apertura hasta 180°.

ANTIPÁNICOS

Barra/Push

Touch

CONTROL

Retención mediante electroimán 24v en C.C.

OJO DE BUEY

Cuadrado 250x250mm

Circular Ø250mm

REJILLA CORTAFUEGOS

Superior, inferior o doble.

Cuadrada 150x150mm

Rectangular 150x300mm (alto x ancho).

HERRAJES

Manilla bocallave/Manilla bocallave. Manilla ciega/Manilla ciega.

Manilla bocallave/Escudo bocallave. Manilla

bocallave/Manilla ciega.

Manilla bocallave/Pomo cilíndrico.

Manilla ciega/Escudo ciego.

Escudo bocallave/Escudo ciego.

Escudo bocallave/ Pomo bocallave.

Pomo bocallave/ Pomo bocallave.

Manilla bocallave/Escudo ciego.

Manilla ciega/escudo bocallave.

Manilla ciega/ Pomo bocallave.

Escudo bocallave/ Escudo ciego.

Pomo bocallave/Escudo ciego.

NEGRO E INOX

OBRA RÍGIDA (opciones de montaje):

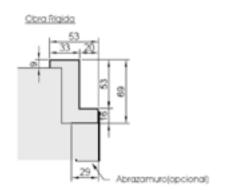
- -Premarco de chapa de acero galvanizado de 1,5mm.
- -Abrazamuro de chapa de acero galvanizado de 1,2 mm

Accesorios opcionales

- -RAL 9010 (Estándar)
- -Color Galvanizado (Puerta especial)
- -Color imitación madera (Opcional)
- -Según carta RAL (Opcional)
- -Puertas montadas y empaquetadas en caballete

BATIENTE CORTAFUEGO EI 60 C51 HOJA OBRA RÍGIDA

mm 800 730 485 700 900 830 545 780 1000 930 605 860 1100 1030 665 940 1200 1130 725 1020 1230 1160 745 1040


1230

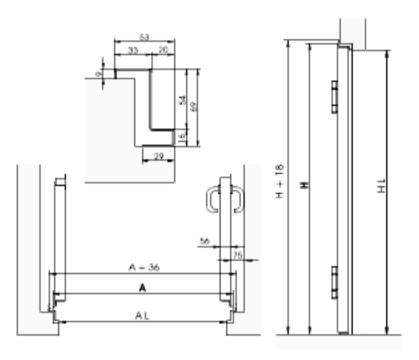
Н	PH
2070	2030
2150	2110
2200	2160
2300	2260
2400	2360
2500	2460

MARCO STD

1095

785

A: Ancho hueco obra H: Alto hueco obra P_s; Ancho Paso libre P_s: Alto Paso libre.


B

PUERTA CORTAFUEGOS EI 60 / EI 90 - ROPER

Las batientes cortafuego ROPER de dos hojas se fabrican para varias medidas de vano, en ancho desde 1000 hasta 2500mm, en alto de vano desde 1600mm hasta 2500mm.

Se entregan pintadas en color RAL 9010 ó galvanizadas.

Marco Estándar

MARCO

Fabricado en chapa de acero galvanizado de 1.5mm. Segun norma UNE EN 10142

HOJA

Fabricada en chapa de acero galvanizado de 0.6mm con refuerzos perimetrales internos de 2.5mm.

Internamente en toda la superficie esta aislada base de lana de roca de 165 kg/m3 pegada con cola intumescente de toxicidad e inflamabilidad nula. Entre las dos bisagras inferiores lleva un pivote de seguridad que evita que la hoja se separe del marco en caso de incendio.

BISAGRAS

Dos bisagras cortafuego sin muelle galvanizados por puerta segun UNE EN 1935 y conforme al CTE para El 60 C5 y tres bisagras para Ei 90 C5

JUNTA INTUMESCENTE

Presente en todo el perímetro del marco excepto en la parte inferior. Con dimensión 20x2.5mm. Fabricada en base de grafito , color negro de elevada dilatación, Flexible, insoluble e inodora,

CERRADURA CORTAFUEGO

Embutida en la hoja. Reversible con doble enclavamiento y resbalon de cierre cumple la norma UNE EN 12209 con marcado CE y conforme al CTE.

	El _s	60			
HUECO	DEOBRA	PASO LIBRE			
A	Н	AL.	HL		
1200		1130			
1300		1230			
1400		1330			
1500		1430			
1600		1530			
1700		1630			
1800	2070/2150	1730	2032/2113		
1900	2200/2300	1830	2163/2263		
2000	2400/2000	1930	2000/2400		
2100		2030			
2200		2130			
2300		2230			
2400		2330			
2500		2430			

	EI,3	0				
HUECO	DE OBRA	PASO LIBRE				
A	Н	AL	HL			
1200		1130				
1300		1230				
1400		1330				
1500		1430				
1600	0070 10450	1530	0.000 104 40			
1700	2070/2150	1630	2033/2113			
1800	2200	1730	2163			
1900		1830				
2000		1930				
2100		2030				
2200		2130				

Embalaje cf dos hojas

Los palets de puertas cortafuego de dos hojas estan formados por 12 puertas, en posicion vertical, sobre un caballete con armazon de tubo metalico y tacos de madera que facilita sus posteriores desplazamientos.

Las puertas se van uniendo entre si por cinta elastica de manera secuencial a medida que se van añadiendo puertas al palet y a su vez, cuando ya se tienen 12 sobre el palet, todas ellas estan enfardadas con film elastic de gran Resistencia.

Todos los paquetes incluyen una hoja de intrucciones para efectuar el desembalaje de las puertas de una manera eficaz, segura y sencilla.

HUECO DE OBRA PESO		PESO PU	ERTA (*)	PUERTAS/PAQUETE		PESO PAQUETE (*)		DIMENSIONES		
A	Н	El_60	El,90	El,60	El,90	El_60	El,90	Α	В	Н
1200		67	73	15	12	1030	901	1290	980	2180
1400		79	84	15	12	1210	1033	1490	980	2180
1600	2070	89	95	15	12	1360	1165	1690	980	2180
1800		105	106	12	12	1302	1302	1890	980	2180
2000		109	117	12	12	1338	1434	2090	980	2180

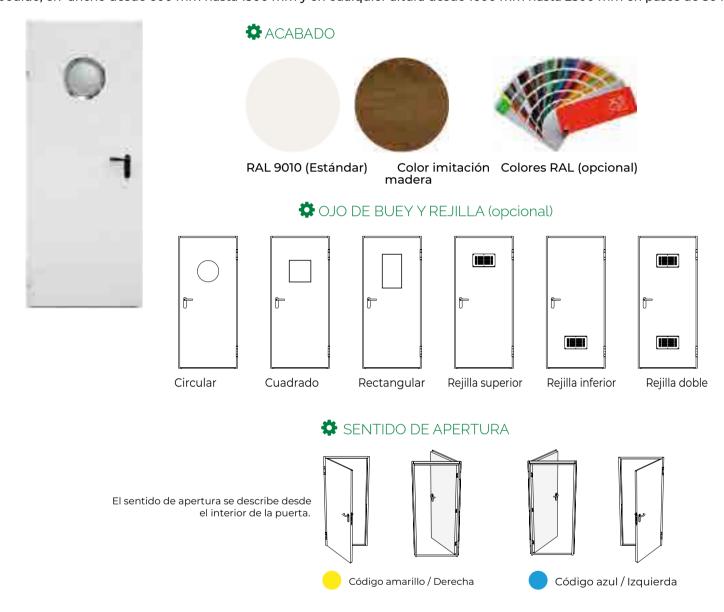
HUEC0	HUECO DE OBRA		PESO PUERTA (*)		PUERTAS/PAQUETE		PESO PAQUETE (*)		DIMENSIONES		
A.	Н	El_60	El,90	El,60	El,90	El_60	El,90	Α	В	Н	
1200		69	76	15	12	1060	937	1290	980	2250	
1400		82	87	15	12	1255	1069	1490	980	2260	
1600	2150	92	99	15	12	1405	1213	1590	980	2250	
1800		103	110	12	12	1266	1350	1890	980	2260	
2000		114	122	12	12	1398	1494	2090	980	2260	

^(*) Aproximado en kg.

Ensayo

OPER dispone de su propio laboratorio de ensayos de fuego y ensayos mecánicos que permiten a su departamento de calidad asegurar la máxima garantía de calidad , fiabilidad e innovación al servicio de nuestros clientes .

ENGAMENTE RESISTERCIA AL PURSO DE PUESTAN CONTAFUEICO.

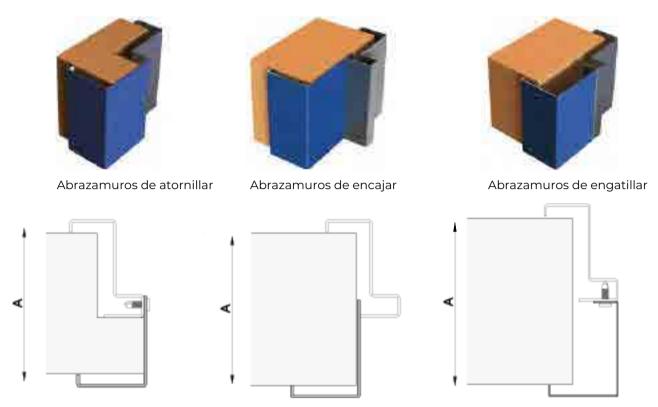


ACCESORIOS PUERTA CORTAFUEGOS

Una hoja

Las Puertas Cortafuego ROPER de una hoja se fabrican para varias anchuras de hueco: 800 / 900 / 1000 / 1100 / 1200 y 1300 mm. Altura de hueco de: 2070 / 2150 / 2200 / 2300 / 2400 y 2500 mm. Opcionalmente se pueden fabricar en cualquier medida bajo pedido, en ancho desde 600 mm hasta 1300 mm y en cualquier altura desde 1600 mm hasta 2500 mm en pasos de 50 mm.

Certificaciones


Clasificaciones: EI2 60 C5 / EI2 90 C5 / EI2 120 C5 / FM approvals.

Cumplimiento con el Código Técnico de Edificación y ensayadas en laboratorios acreditados de acuerdo con la UNE EN 1634-1 para Puertas Cortafuego de bisagras sin muelle.

Clasificaciones: El2 60 / El2 90. Cumplimiento con NBE / CPI / 96 y ensayadas en laboratorios acreditados de acuerdo con la UNE EN 1634-1 para puertas cortafuego de bisagras con muelle.

ABRAZAMURO / PREMARCO

^ Wincho marco variable (máximo 250 mm)

MITACIÓN MADERA

Las batientes se pueden entregar bajo pedido en acabado en chapa de color imitación madera de roble oscuro.

*ACCESORIOS

Manilla doble cara inoxidable

Escudos inoxidable con bombillo

Manilla electrónica con control acceso

MARCO

Fabricado en chapa de acero galvanizado de 1,5 mm. Según norma UNE EN 10142.

HOJA

Fabricada en chapa de acero galvanizado de 0,6 mm con refuerzos perimetrales internos de 2,5 mm. Internamente en toda la superficie está aislada a base de lana de rocade 165 kg/m3 pegada con cola intumescente de toxicidad e inflamabilidad nula. Entre las dos bisagras inferiores lleva un pivote de seguridad que evita que la hoja se separe del marco en caso de incendio.

BISAGRAS

Dos bisagras cortafuego sin muelle galvanizadas por puerta según UNE EN 1935 y conforme al CTE para El2 60 C5 y tres bisagras para El2 90 C5.

JUNTA INTUMESCENTE

Presente en todo el perímetro del marco excepto en la parte inferior; con dimensión 20 x 2,5 mm. Fabricada en base de grafito, color negro, de elevada dilatación, flexible, insoluble e inodora.

CERRADURA CORTAFUEGO

Embutida en la hoja. Reversible con doble enclavamiento y resbalón de cierre. Cumple la norma UNE EN 12209 con marcado CE y conforme al CTE.

ENSAYOS

ROPER dispone de su propio laboratorio de ensayos de fuego y ensayos mecánicos que permiten a su departamento de calidad asegurar la máxima garantía de calidad, fiabilidad e innovación al servicio de nuestros clientes

Selector de cierre

Barra Antipánico / Push

Cierrapuertas oculto

Cierrapuertas de superficie

Rejilla O cortafuego

jo de buey O circular

jo de buey cuadrado / rectangular

MERCOR TECRESA EXHUTORIOS Y CLARABOYAS

EXHUTORIO DVP DOBLE COMPUERTA

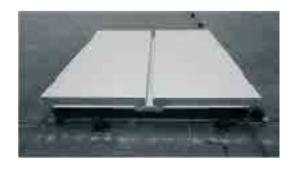
El modelo TECRESA DVP es un exutorio de doble compuerta. Se ha diseñado para la evacuación de grandes volúmenes de humo en caso de incendio, manteniendo unas elevadas restaciones de aislamiento térmico.

En el exutorio podemos diferenciar y seleccionar claramente y acorde a nuestras necesidades dos elementos: base y compuertas.

La base se puede realizar CON o SIN aislamiento.

Aislamiento disponible: 20 o 40 mm.

AL: ALUMINIO.


ST: ACERO GALVANIZADO.

Las compuertas se fabrican de forma estándar en las siguientes opciones:

AL: Compuerta de Aluminio

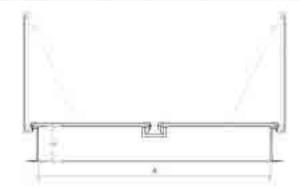
AL-XPS: Compuerta de Aluminio con aislamiento de 20 o 40 mm.

PCA: Policarbonato transparente o translúcido de 10 a 25 mm.

Se trata de un exutorio ideal cuando su instalación sea horizontal o inclinada, adaptándose erfectamente tanto a cubiertas tipo DECK como de panel.

Las dimensiones disponibles: ALTO: de 15 a 50 cm. ANCHO: de 120 a 250 cm. LARGO: de 160 a 300 cm. ÁNGULO de instalación: 0° - 30°

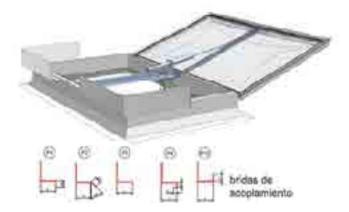
Seguridad


El exutorio Tecresa DVP está dotado de un sistema de seguridad que incluye una fuente de alimentación secundario y un dispositivo de activación consistente en un elemento fusible tarado entre 57 y 260 °C según los requisitos del proyecto.

Sistema apertura

El sistema de apertura para la evacuación de humos se puede seleccionar de entre los siguientes:

- NEUMÁTICO: A través de cilindros de doble efecto.
- ELÉCTRICO: A través de motores eléctricos a 24 V DC



EXHUTORIO TIPO CLARABOYA

Exutorio de compuerta simple

El exutorio tipo Claraboya es un exutorio de compuerta simple diseñado para la evacuación de grandes volúmenes de humo en caso de incendio, a la vez que mantiene unas elevadas prestaciones de aislamiento térmico.

Material

En el exutorio podemos diferenciar y seleccionar de forma independiente su dos elementos principales: base y compuertas.

La base se puede realizar CON o SIN aislamiento. bridas de acoplamiento

Con reserva de cualquier modifi cación técnica. Exutorio tipo claraboya 06-2016.1

Aislamiento disponible: 20 o 40 mm.

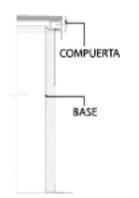
AL: ALUMINIO.

ST: ACERO GALVANIZADO.

Bridas de acoplamiento.

Las compuertas se fabrican de forma estándar en las

siguientes opciones:


AL: Compuerta de Aluminio

AL-XPS: Compuerta de Aluminio con aislamiento de 20

o 40 mm

PCA: Policarbonato transparente o translúcido de 10 a

25 mm

Se trata de un exutorio ideal cuando su instalación sea en cubiertas horizontales o con ligera

Las dimensiones disponibles:

ALTO: de 30 a 50 cm. ANCHO: de 100 a 200 cm. LARGO: de 100 a 220 cm.

ÁNGULO de instalación: 0° - 30°

Seguridad

El exutorio tipo claraboya mcr-C está dotado de un sistema de seguridad que inlcuye una fuente de alimentación secundaria y un dispositivo de activación consistentente en un elemento fusible tarado entre 57 y 260 °C según los requisitos del proyecto.

Sistema de ventilación

Los equipos disponen de la posibilidad de instalar un pequeño motor eléctrico con funcionamiento a 230 V AC, que permite la apertura de ventilación individual a través de un sencillo pulsador.

Sistema de apertura

NEUMÁTICO: A través de cilindros de doble efecto. ELÉCTRICO: A través de motores eléctricos a 24 V DC

EXHUTORIO DE LAMAS

Exutorio de Lamas

El sistema TECRESA mcr LAM es un exutorio de lamas diseñado para la evacuación y ventilación de humos de incendio y gases

Material

La base está fabricada íntegramente en aluminio, puede incluir aislamiento térmico si fuera necesario. Su altura estándar es de 20 cm en una única pieza, pudiéndose fabricar en otras alturas bajo petición.

Las lamas pueden fabricarse en aluminio de doble capa con o sin aislamiento así como en policarbonato. Drenan el agua al exterior y disponen de juntas de EPDM que garantizan una total estanqueidad.

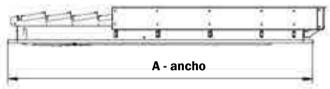
Su sistema de rotación sobre casquillos autolubricados permiten reducir las labores de mantenimiento. El exutorio TECRESA mcr LAMestá equipado con defl ectores que lo protegen de los efectos del viento garantizando su efi ciencia aerodinámica. Aleación de aluminio AlMg3, resistente a los ambientes salinos y/o corrosivos

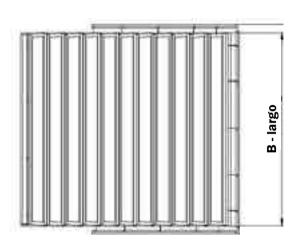
DESCRIPCIÓN

- 1 Base
- 2 Brida
- 5 Accionamiento

4 De⊠ector

3 Lamas





Exutorio de lamas **Tecresa mcr LAM** con sistema de apertura neumático de simple efecto

Exutorio de lamas **mcr LAM** con de⊠ector de viento para instalación en cubierta

Accionamiento

La calidad de los materiales y actuadores que integran el exutorio Tecresa mcr LAM, permite no sólo su uso para evacuación de humos y gases calientes en caso de incendio, sino que también lo convierte en un sistema ideal para efectuar una ventilación natural diaria.

Ante situaciones de emergencia dispone de un enclavamiento mecánico que permite garantizar que el exutorio se mantiene abierto pese a sufrir daños en caso de incendio.

Tanto los sistemas eléctricos como neumáticos requieren un mantenimiento mínimo en función del uso. La opción eléctrica viene equipada con actuadores eléctricos a 24 V DC, mientras que la opción neumática ensamblará cilindros neumáticos acorde a las necesidades. Este tipo de apertura dispone de un sistema de seguridad que incluye una fuente de alimentación secundaria y un dispositivo de activación consistente en un fusible térmico tarado entre 57 °C y 260 °C a seleccionar según proyecto

PARÁMETROS A ELEGIR

- 1. número de lamas: de 4 a 19.
- 2. ancho del exutorio: de 50-250 cm.
- 3. tipo de base:
 - H base sin aislamiento térmico.
 - H0 base con aislamiento térmico.
- 4. altura de la base: de 15-60 cm.
- 5. mecanismo de aper tura / cierre:
 - · Neumático doble efecto.
 - Neumático simple efecto.
 - Eléctrico 24 V DC.
- 6. tipo de lamas:
 - Aluminio de doble capa .
 - Aluminio aislado.
 - Policarbonato clear / opal .

MERCOR TECRESA DAMPERS, TEMPLADORES Y COMPUERTAS CORTAFUEGO

DAMPERS TEMPLADORES RECTANGULARES

MCR FID-C

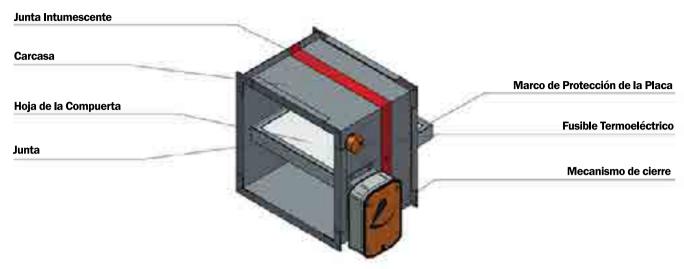
Compuertas Cortafuego

Las Compuertas Cortafuego MERCOR han sido especialmente diseñadas para compartimentar conductos que pasan por diferentes sectores de incendio tal como exigen las normativas vigentes en materia de protección contra incendios en edificios. Además, las Compuertas mcr FID poseen el marcado CE en cumplimiento del reglamento 305/2011/EU.

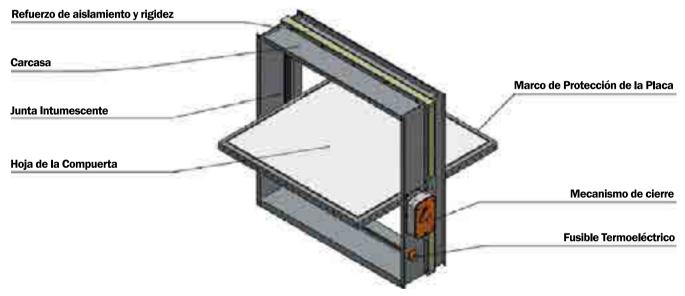
Ampliación

- Las compuertas rectangulares mcr FID-C y mcr FID-P han sido diseñadas para ser integradas en sistemas de ventilación, especialmente en zonas de paso de tabiques, tanto vertical como horizontalmente.
- Durante el fuego, las compuertas previenen la expansión del fuego, las llamas y el humo a través de los conductos de ventilación, permaneciendo aislada la zona contigua del edificio.
- En situaciones normales de operación, la compuerta permanece abierta; y en caso de fuego, se cierra la hoja interior o clapeta para impedir la propagación del fuego al habitáculo contiguo.

MCR FID-P


Normativa

- Resistencia al fuego EIS120 (E=Integridad, I=Aislamiento térmico, S=Estanqueidad de los humos).
- Compuertas cortafuego certificadas según normativa EN 15650 (Ventilación de edificios. Compuertas Cortafuego), EN 13501-3 (Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 3: Clasificación a partir de datos obtenidos en ensayos de resistencia al fuego de productos y elementos utilizados en las instalaciones de servicio de los edificios: Conductos y compuertas resistentes al fuego) y EN 1366-2 (Ensayos de resistencia al fuego de instalaciones de servicio. Parte 2: Compuertas cortafuegos).
- •Marcado CE con certificados según modelos: mcrFID-C (1488-CPD-0203/W, 1396-CPR-0114) y mcr-FID-P (1488-CPR-0442/W, 1396-CPR-0103)



DISEÑO

COMPUERTA RECTANGULAR "mcr FID C"

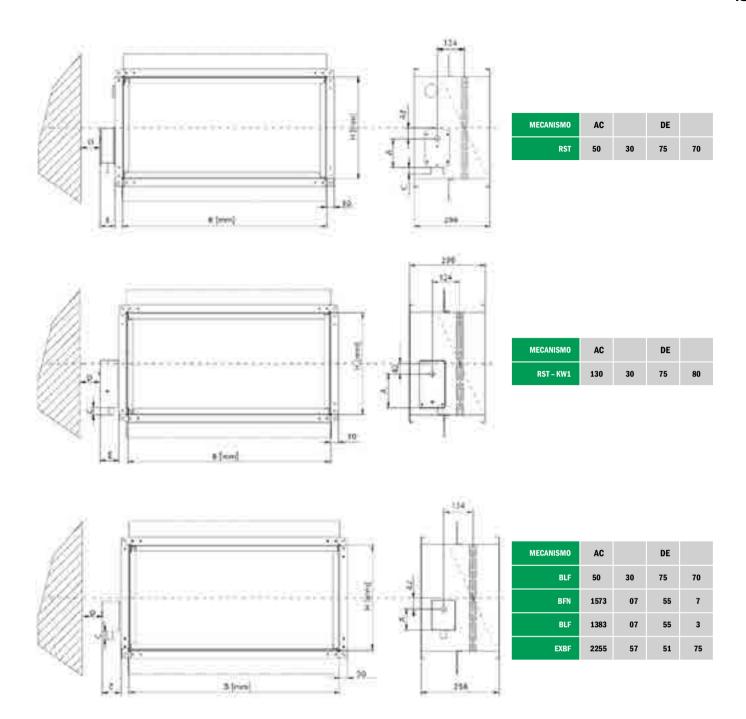
COMPUERTA RECTANGULAR "mcr FID P"

Mecanismos de disparo

Además del mecanismo de actuación manual, las compuertas cortafuego se pueden suministrar accionadas por otros mecanismos de tipo eléctrico. En estos casos la compuerta puede actuar por un doble sistema: mediante fusible térmico o mediante accionamiento electro-mecánico.

Tipos de accionamiento:

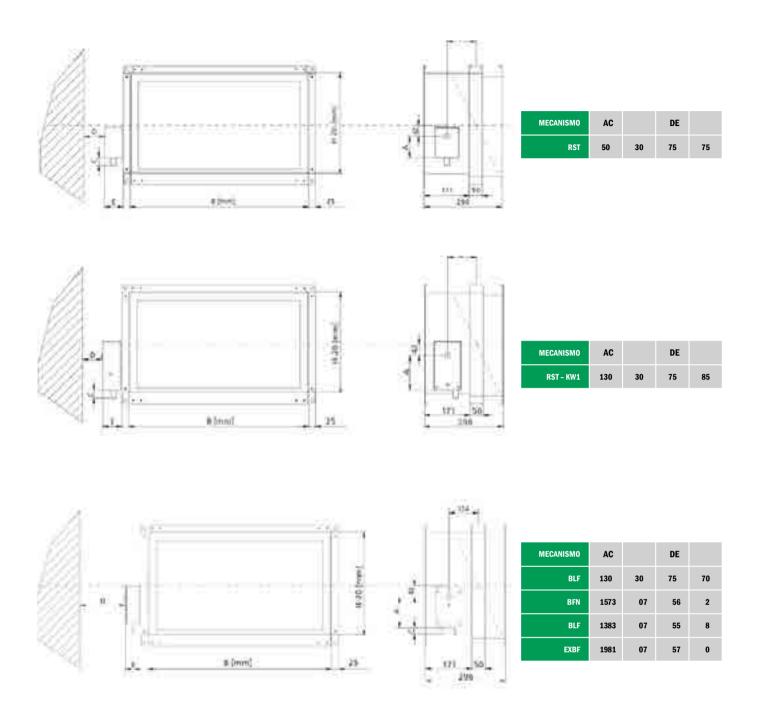
DISPOSITIV	0	DESCRIPCIÓN
	RST	Fusible térmico (tipo bimetal)
	RST / WK1	Fusible térmico bimetálico y ctarctos (1x NO + 1x NC) de señal de comptaecerrada
	rst / wk2	Fusible térmico bimetálico y contactos (1Xno + 1xnc) de señales tanto de compuerta abierta como de cerrada
• • • • • • • • • • • • • • • • • • • •	RST-KW1/S	Con fusible térmico bimetálico 74° + manivela de rearme
	RST-KW1/S/WK2	Fusible térmico 74° + manivela de rearme + contactos final de carrera (2 X NO / NC)
	RST-KW1/24I	Fusible térmico 74° + manivela de rearme + contactos final de carrera (2 X NO $/$ NC) + sistema de cierre por pulso eléctrico de 24 Volt C.C.
	RST-KW1/24P	Fusible térmico 74° + manivela de rearme + contactos final de carrera (2 X NO / NC) + sistema de cierre por corte de tensión (24 Volt c.c.)
2	RST-KW1/230I	Fusible térmico 74° + manivela de rearme + contactos final de carrera (2 X NO / NC) + sistema de cierre por pulso eléctrico de 230 Volt A.C.
	RST-KW1/230P	Fusible térmico 74° + manivela de rearme + contactos final de carrera (2 X NO / NC) + sistema de cierre por corte de tensión (230 Volt A.C
	BF24-T	Actuador eléctrico alimentado a 24 Volt C.C./A.C. con un consumo de 2,5 w. en reposo y 7 w. en funcionamiento y dispositi-vo de disparo termo eléctrico con contactos auxiliares (2 X SPDT) cuando la compuerta alcanza los 5° y 80°. (par motor 6 Nm Y par de retorno muellle 4 Nm)
	BF230-T	Actuador eléctrico alimentado a 220 Volt C.C./A.C. con un consumo de 3 w. en reposo y 5 w. en funcionamiento y dispositivo de disparo termo eléctrico con contactos auxiliares (2 X SPDT) cuando la compuerta alcanza los 5° y 80°. (par motor 6 Nm. Y par de retorno muelle 4 Nm.
	BFN24-T	Actuador eléctrico alimentado a 24 Volt C.C./A.C. con un consumo de 1,4 w. en reposo y 4 w. en funcionamiento y dispositi-vo de disparo termo eléctrico con contactos auxiliares (2 X SPDT) cuando la compuerta alcanza los 5° y 80°. (par motor 9 Nm. y par retorno muelle 7 Nm.
	BFN230-T	Actuador eléctrico alimentado a 220 Volt. C.C./A.C. con un consumo de 2,1 w. en reposo y 5 w. en funcionamiento / y dispositivo de disparo termo eléctrico con contactos auxiliares (2 X SPDT) cuando la compuerta alcanza los 5° y 80° (par motor 9 Nm. y par de retorno muelle 7 Nm.
u	BFL24-T	Actuador eléctrico alimentado a 24 Volt C.C./A.C. con un consumo de 0,7 w. en reposo y 2,5 w en funcionamiento y disposi-tivo de disparo termo eléctrico con contactos auxiliares (2 X SPDT) cuando la compuerta llega a 5° y 80°. (par motor 4 Nm. Y par de retorno muelle 3 Nm.
	BFL230-T	Actuador eléctrico alimentado a 22017. C.C./AC. con un consumo de 1,w. en reposo y 3,5 w. en funcionamiento y dispositivo de disparo termo eléctrico con contactos auxilzares x SPDT) cuando la compu e a llega a 5° y 80° (par motor 4 Ninpar de retorno muelle 3 N.m


Dimensiones

COMPUERTA RECTANGULAR "mcr FID C"

- · Ancho nominal B: desde 200 mm. a 800 mm.
- · Alto nominal H: desde 200 mm. a 400 mm.
- · Superficie máxima de paso por Compuerta hasta 0,32 m2.

Dimensiones en función del mecanismo utilizado:


Dimensiones

COMPUERTA RECTANGULAR "mcr FID P"

- · Ancho nominal B: desde 200 mm. a 1500 mm.
- · Alto nominal H: desde 200 mm. a 1500 mm.
- · Superficie máxima de paso por Compuerta hasta 1,8 m2.

Dimensiones en función del mecanismo utilizado:

Peso estimado compuertas COMPUERTA RECTANGULAR "mcr FID C" Peso en función de las dimensiones del conducto (Kg):

					Ancho	B (mm)			
		200	250	300	400	500	600	700	800
	200	7,58		91	01	11	41	61	8
(WILL)	250	89	,5	10	11	14	15	17	19
Altura H (mm)	300	91	0,51	11	21	51	61	82	0
Altu	350	10	11,5	12	13	16	17	19	21
	400	11	12,5	13,5	14	18	19	21	22

COMPUERTA RECTANGULAR "mcr FID P"

Peso en función de las dimensiones del conducto (Kg):

								An	cho B (m	m)						
		200	250	300	400	500	600	700	800	800	800	800	800	800	800	800
	200	9,59	,7	10	10	15	17	17,5	19	22	25	28	30	33	39	45
	250	9,51	01	11	11	61	7,51	82	12	42	72	93	23	44	54	8
	300	10	11	11	12	17	20	21	23	26	28	31	34	38	50	51
	350	11	11	11	16	18	20,52	32	62	82	93	33	53	65	25	3
	400	10	11	12	18	19	21	25	29	30	33	35	36	39	54	55
	500	15	16	17	19	20	23	27	32	33	35	38	40	44	55	56
=	600	17	17,5	20	21	30	30	30	35	37	39	43	48	52	56	58
H (mm	700	17,5	18	21	23	30	35	35	40	42	44	47	52	54	57	65
Altura H (mm)	800	20	21	22	24	29	35	37	41	43	49	52	57	60	62	78
⋖	900	22	25	25	28	33	35	39	43	47	53	56	60	62	64	82
	1000	23	29	28	33	36	42	43	49	53	56	59	65	67	69	98
	1100	26	30	31	35	38	42	47	56	59	62	63	69	71	73	101
	1200	32	33	35	36	40	49	53	56	61	71	72	73	85	86	105
	1300	39	40	38	39	44	52	57	59	78	79	80	81	92		
	1400			48	39	48	56	63	65	80	82	85	87			-
	1500			50	50	52	58	68	71	82	98	1151	20			-

COMPUERTA RECTANGULAR "mcr FID C"

B - Ancho Nominal [mm]

H – Alto Nominal [mm]

Se – Sección útil de la compuerta [m2]

v - velocidad [m/s]

Sk – Sección de los conductos [m2]

 $\mathbf{L}_{\mathbf{W}/\mathbf{A}}$ - Nivel de Presión sonora [dB]

Q - Caudal [m3/h]

dp - Caída de Presión [Pa]

										H [mm]							
					200					250					300		
		v [m/s]	Sk [m²]	Se [m²]	Q [m ¹ /h]	dp [Pa]	(dB)	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	(dB)	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L ₇₇₃ [dB]
П		4			468	7	27			612	6	26			756	6	28
	200	- 6	0.04	0.033	702	15	37	0.05	0.043	918	13	37	0.06	0.053	1.134	13	38
	200	8	0.04	0.033	936	26	45	0.05	0.043	1 224	24	45	0.00	0.053	1 512	22	44
L		10			1 170	41	- 51			1 530	37	50			1.890	34	50
		4			585	- 6	27			765	- 6	27			945	5	26
	250	- 5	0.05	0.041	878	14	37	0.0625	0.053	1 148	13	38	0.075	0.066	1 418	-11	37
		8	0.00	0.041	1 170	24	45	0.002.0	0.000	1 530	23	45	0.075	0.000	1.890	20	44
-		10		_	1.463	38	50	_		1 913	36	51			2.353	31	50
		4			702	- 6	27			918	6	28			1 134	4	26
	300	- 5	0.06	0.049	1 053	13	38	0.075	0.064	1 377	13	38	0.09	0.079	1.701	10	36
		8			1 404	24	45			1 836	22	46			2 268	18	44
-		10		_	1.755	37	51	_		2 295	35	51			2.835	28	49
		4			819	- 6	27			1 071	5	27			1 323	4	25
	350	6	0.07	0.057	1 229	13	38	0.0875	0.074	1 607	11	37	0.105	0.092	1 985	9	35
		8			1 638	22	45			2 142	20	45			2 646	16	43
H		10		_	2 048	35	51			2 678	31	50			3 308	25	49
		4			936	5	27			1 224	9	25			1 512	4	24
- 1	400	6 8	0.08	0.065	1 404	12	38	0.1	0.085	1 836	17	35	0.12	0.105	2 268	8	34
		10			1 872	34	45 51	1		2 448 3 060	26	43			3 780	22	42
H		4			1 053	5	27			1 377	3	22			1 701	3	23
- 1					1 580	11	37	1		2 066	7	33			2 552	7	33
- 1	450	6	0.09	0.073	2 106	20	45	0.1125	0.096	2 754	13	40	0.135	0.118	3.402	13	41
- 1		10			2 633	31	50	1		3 443	20	46	1		4 253	20	47
ı		4			1 170	4	26			1 530	3	23			1.890	3	23
Εl		- 6			1.755	10	36	1		2 295	8	34			2.835	7	34
E	500	8	0.1	0.081	2 340	18	44	0.125	0.106	3.060	13	41	0.15	0.131	3 790	13	41
=		10			2 925	28	50	1		3 825	21	47	1		4.725	20	47
ı		4			1 287	- 4	25			1.683	3	23			2 079	3	22
		- 6			1 931	9	36			2 525	7	33			3 119	6	33
	550	8	0.11	0.089	2 574	17	43	0.1375	0.117	3 366	13	41	0.165	0.144	4 158	12	40
		10			3 218	26	49	1		4 208	20	47			5 198	18	46
Г		4			1 404	3	21			1 836	3	20			2 268	2	20
- 1	600	- 6	0.13	0.000	2 106	7	32	0.15	0.120	2.754	- 6	31	0.18	0.158	3 402	5	31
	600	8	0.12	0.098	2 808	12	39	0.15	0.128	3 672	10	38	U.10	0.138	4 536	1.0	38
L		10			3 510	19	45			4 590	16	44			5 670	15	44
Γ		4			1 521	3	22			1 989	3	21			2.457	2	20
	650	- 6	0.13	0.106	2 282	7	32	0.1625	0.138	2.984	- 6	31	0.195	0.171	3 686	5	30
	0,0	В	5.13	0.100	3 042	12	40	J 102 3	0.7316	3 978	10	39	2.793	2.171	4 914	9	38
L		10			3 803	19	46			4 973	16	45			6 143	14	44
- 1		4			1 638	3	21			2 142	2	20			2 645	2	19
- 1	700	- 6	0.14	0.114	2.457	- 6	32	0.175	0.149	3 213	5	31	0.21	0.184	3 969	5	30
		8			3 276	12	39			4 284	10	38			5 292	8	37
-		10			4 095	18	45			5 355	15	44			6 615	13	43
		4			1.755	3	21			2 295	2	20			2 835	2	20
	750	- 6	0.15	0.122	2 533	- 6	31	0.1875	0.159	3 443	5	31	0.225	0.197	4 253	5	30
		8			3 510	11	39			4 590	10	38			5 670	8	38
-		10		_	4 388	17	45			5.738	15	44			7 088	13	43
		4			1 872	2	20			2 448	2	20			3 024	2	19
	800	6	0.16	0.130	2 808	5	30	0.2	0.170	3 572	5	30	0.24	0.210	4 536	4	29
		8			3 744	10	38			4 896	9	38			6 048	8	37
		10			4 680	15	43	$\overline{}$		6 120	16	44			7 550	12	-63

v - velocidad [m/s]

Q - Caudal [m3/h]

H – Alto Nominal [mm]

Sk – Sección de los conductos [m2]

dp – Caída de Presión [Pa]

Se - Sección útil de la compuerta [m2]

 $\mathbf{L}_{\mathbf{W/A}}$ – Nivel de Presión sonora [dB]

							H (m	m]				
					350					400		
		v [m/s]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{.//.} [dB]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]	L _{//2} [dB]
		4			900	5	26			1 0 4 4	- 5	26
	200	- 6	0.07	0.063	1 350	12	37	0.00	0.073	1 566	11	37
	200	8	0.07	0.063	1 800	21	44	0.08	0.075	2 088	19	44
		10			2 250	32	50			2 610	30	50
		4			1 125	4	25			1 305	4	25
	250	6	0.0875	0.078	1 688	10	36	0.1	0.091	1 958	9	35
		8			2 250	17	43			2 610	16	43
		10			2 813	27	49			3 263	25	49
		4			1 350	4	26			1 566	4	24
	300	6	0.105	0.094	2 025	10	36	0.12	0.109	2 349	8	35
		8			2 700	17 27	44			3 132	15	42
		10			3 375 1 575	4	50 25			3 915	23	48
		6			2 363	9	36			2 741	8	36
	350	8	0.1225	0.109	3 150	15	43	0.14	0.127	3 654	15	43
		10			3 938	24	49			4 568	23	49
		4			1 800	3	24			2 088	3	23
		6			2 700	8	34			3 132	7	34
	400	8	0.14	0.125	3 600	13	42	0.16	0.145	4 176	12	41
		10			4 500	21	48			5 220	19	47
		-4			2 025	3	24			2 349	3	21
		- 6			3 038	7	34			3 524	- 6	32
	450	8	0.1575	0.141	4 050	13	42	0.18	0.163	4 698	10	39
		10	1		5 063	20	48			5 873	16	45
		- 4			2 250	2	20			2 610	2	20
ΞI	500	6	0.175	0.154	3 375	5	31	0.3	0.101	3 915	5	31
B [mm]	500	8	0.175	0.156	4 500	10	38	0.2	0.181	5 2 2 0	9	38
-		10			5 605	15	44			6 525	14	44
		4			2 475	2	19			2 871	2	20
	550	- 6	0.1925	0.172	3 713	5	29	0.22	0.199	4 3 0 7	5	30
		8			4 950	8	37		0.122	5 742	8	38
		10			6 188	13	43			7 178	13	43
		4			2 700	2	18	l		3 132	2	19
	600	6	0.21	0.188	4 050	-4	29	0.24	0.218	4 698	4	28
		8			5 400	8	36			6 264	7	36
		10			6.750	12	42			7 830	11	42
		4			2 925	2	19			3 393	2	18
	650	6	0.2275	0.203	4 388	4	29	0.26	0.236	5 090	4 7	29
		10			7 313	12	42			6 786 8 483	7	36 42
		4			3 150	2	18			3 654	2	18
		6			4 725	4	28			5 481	4	29
	700	8	0.245	0.219	6 300	7	36	0.28	0.254	7 308	7	36
		10			7 875	- 11	42			9 135	11	42
		4			3 375	2	18			3 915	2	17
	250	6			5 063	- 4	29			5 873	4	28
	750	8	0.2625	0.234	6.750	7	36	0.3	0.272	7 830	6	35
		10			8 438	11	42			9 788	10	41
		- 4			3 600	2	18			4 176	2	18
	800	- 6	0.30	0.750	5 400	- 4	29	0.33	0.202	6 264	4	28
	800	8	0.28	0.250	7 200	7	36	0.32	0.290	8 352	6	36
		10			9 000	11	42			10 440	10	41

COMPUERTA RECTANGULAR "mcr FID P"

B - Ancho Nominal [mm]

H – Alto Nominal [mm]

Se – Sección útil de la compuerta [m2]

v - velocidad [m/s]

Sk - Sección de los conductos [m2]

 $\mathbf{L}_{\mathbf{W/A}}$ – Nivel de Presión sonora [dB]

Q - Caudal [m3/h]

dp - Caída de Presión [Pa]

				200					H (mm) 250					300		
		,5k	5e [m²]	[m ² h]	dp.	Los	,5k,	.55.	[m ² h]	dp.	L	,Sk	5e [m²]	[m ² m]	dp.	L
_	4	[m ²]	[m-]	420	[Pa]	[d3]	[m ²]	[m ²]	564	[Pa]	[dB]	[61]	[m]	708	[Pa]	[dB
100	- 6	0.040	0.029	631	21	41	0.050	0.039	(58)	19	42	0.060	0.049	1.063	19	42
	10			1 051	37	49			1 129	35	49			1.417	33 52	50
	4			526	9	31	-		706	9	32	-		886	8	32
290	- 6	0.090	0.037	788	21	4)	0.063	0.049	1.058	19	43	0.075	0.062	1 328	18	42
	10			1 051	37 57	50			1.764	36	50			2 214	31 49	56
	4			631	9	31			847	8	33			1 063	.8	3.2
300	6	0.090	0.044	946	30	50	0.075	0.059	1 270	19	43	0.090	0.034	1 594	17	50
	10			1 5/7	36	56			2 117	34 57	51 54			2 125	30 47	54
	- 4			736	9	33			988	8	33			1.240	7	32
390	6	0.000	0.051	1 104	30 36	-63 -51	0.088	0.099	1 482	19	51	0.105	0.086	1 860	16	56
	10			1.840	56	57			24/0	52	57			3100	45	51
	4			841	9	33			1 129	8	34			1.417	7	32
400	6	0.080	0.058	1 682	35	43 51	0.100	0.078	2 258	33	52	0.120	0.058	2 834	27	50
	10			2 102	54	57			2 872	53	57			3.542	42	56
	4			946	9	33			1.270	7	32			1 594	7	32
450	8	0.096	0.055	1 619	19 35	51	0.113	0.033	2 540	29	51	0.135	0.111	3 188	27	- 51
	10			2 365	54	57			3 175	46	56			3 985	42	54
	4			1.051	9	34			1 411	7	32			1 771	7	3.2
500	5 B	0.100	0.073	2 102	19 35	52	0.125	0.098	2 117 2 B22	16 28	43 50	0.150	0.123	2 657 3 542	15 26	-43
	10			2 638	54	58	1		3 528	44	56			4 428	41	54
	. 0			1 156	8	34			1 552	2	33			1 958	- 6	11
550	8	0.110	0.080	2 313	19	52	0.138	0.108	3 105	16 28	43 51	0.165	0.135	3 897	26	4
	10			2 801	53	58	1		3 881	44	57	1		4 371	40	56
	4			1 261	3	34			1 503	7	33			2 125	6	3.
600	5	0.120	880.0	2 523	19	52	0.150	0.118	3 367	15	51	0.180	0.148	4 251	26	51
	10			3 154	53	58	1		4.234	42	56			5 314	40	57
	4			1 367	3	35 45			1805	14	43			2 303	14	33
650	5 B	0.130	0.095	2 733	12	51	0.163	0.127	2.752 3.669	26	50	0.195	0.160	3 454	26	51
	10			3.416	53	59	_		4586	40	.56		_	5.756	40	57
	4			2 7 08	19	35 45			2 964	14	33			3 720	14	34
700	b E	0.140	0.102	2 913	13	51	0.175	0.137	3 951	26	51	0.210	0.172	4 959	26	52
_	10	_		3 679	52	59	_		4 939	60	56	┝	_	6 199	60	52
	6			2 523	13	45			3 387	14	43			4 251	14	33
800	8	0.560	0.117	3 364	32	53	0.200	0.157	4516	24	51	0.240	0.197	5 668	24	52
\vdash	10			4 205	50	59	-		5.605	338	56	\vdash	-	7.085	3.8	57
	- 4			1 892 2 838	15	44			3 810	13	43			3 188 4 782	12	32
900	8	0.180	0.131	3.784	29	51	0.225	0.176	5 080	23	50	0.270	0.221	6 376	21	50
\vdash	10			4.730	45 7	58	-		6.350	36	56	-	_	7 970	32	51
	- 6			3 154	16	34 45			4234	13	43			5 314	12	32
1000	В	0.200	0.146	4 205	29	52	0.250	0.196	5 645	22	50	0.300	0.246	7 085	21	56
-	10			2 313	45	58	-		7 056 3 105	5	32	-	_	3 897	5/	33
****	- 6	0.336	0.161	3 469	16	- 65	0.77	0.316	4 657	12	43	0.220	0.171	5 845	12	43
1100	8	0.220	0.161	4 625	29	53	0.275	0.216	6209	22	50	0.330	0.271	7 793	21	5
	10			2 523	45	37			3367	34	33			4 251	9	-40
1200	- 6	0.240	0.175	3.784	18	dT	0.300	0.235	5.080	12	43	0.360	0.295	6.376	50	- 51
1200	B 10	0.240	0.175	5 046	29	53	0.300	0.233	6774	22	51	0.300	0.273	8 502	35	58
	4			2.733	45	37			3 669	34	33			4 605	5	33
1360	- 6	0.266	0.190	4100	15	41	0.305	0.255	5 504	12	43	0.390	0.320	6 908	12	-64
1,743	10			5 466	29 45	54			9173	33	57			9 210	21	51
	4			2 943	7	36			3.951	5	33			4 959	5	34
1460	- 6	0.280	0.204	4.415	16	-66	0.350	0.274	5.027	12	-64	0.420	0.344	7.439	12	-64
1465	10	0.200		7 358	29	54 60		0.214	7 903 9 878	21	51			9 919	21	52
	4			3 154	7	35			4234	5	33			5 314	5	34
1500	6	0.300	0.219	4.730	15	465	0.375	0.294	6360	12	-64	0.450	0.369	7 970	12	-45
1,740	10	4.200	0.413	6 307 7 884	27	53		0.274	8 467	21	51		4.247	10 627	21	52
	-07			1.650	2	37	_		10.354	50	37	_		13.284	54	- 50

H - Alto Nominal [mm]

Se - Sección útil de la compuerta [m2]

v - velocidad [m/s]

Sk – Sección de los conductos [m2]

L_{w/A} - Nivel de Presión sonora [dB]

Q - Caudal [m3/h]

dp - Caída de Presión [Pa]

				350					400					450		
	v	Sk	Se	0	dp	Lyna	Sk	Se	9	dp	Lyn	5k	.Se	9	dp	L
	[m/s]	[m ²]	[m²]	[m ³ /h]	[Pa]	[d8]	[m ²]	[m ²]	[m ³ /h]	[Pa]	[d8]	[m ²]	[m ²]	[m ³ /h]	[Pa]	[d8]
	6			1.279	18	32 42			1495	17	31 42			1 1/00	15	31 41
200	3	0.070	0.059	1 705	32	50	0.080	0.069	1 9 0 3	29	40	0.090	0.079	2.281	26	49
\vdash	10			2 131	50	56	-		2.491	46	55		_	2.851	- 41	54
	- 4			1 598	16	31 42			1 246	13	29			2 138	13	29
250	3	0.088	0.074	2 131	29	50	0.100	0.087	2 491	23	47	0.113	0.099	2.851	22	47
_	10			2 664	45	55	-		3 114	36	53	_		3 5 6 4	35	5.7
	4			1 279	7	32 43			1.495	6	30 41	-		1711	12	30 40
300	- 6	0.105	0.089	2 557	16 28	50	0.120	0.104	2 242	34	48	0.135	0.119	3 421	22	48
	10			3.197	64	56			3 737	37	54			4277	34	54
	-4			1 492	7	32			1.744	6	30			1 996	- 5	30
350	- 6	0.123	0.104	2 238	26	50	0.140	0.121	3 488	22	41	0.158	0.139	3 994	21	48
	10			3 730	41	56	1		4 360	35	54	1		4 990	33	54
	-4			1.705	- 6	31			1 993	- 6	31			2.281	- 5	30
400	5 3	0.140	0.118	2 557	13	41	0.160	0.138	2 989	13	41	0.180	0.158	3 421	12	41
	10			3.410 4.262	24 37	49			4 982	35	49.			5 702	32	48
	4			1.918	- 5	30			2 242	5	30			2 566	4	29
450	- 6	0.158	0.133	2 877	12	41	0.180	0.155	3 3 6 3	12	41	0.203	0.178	3 849	10	40
455	8	0.130	0.130	3 836 4 795	34	48 54	0.100	9.130	5 605	21	48 54	0.200	0.176	5 132	18 25	53
\vdash	10			2 131	5	31	_		2.401	5	30	_	_	2 851	4	29
	- 6	0.101		3 197	12	41		0.000	3 737	11	40	0.100		4277	9	39
500	- 8	0.175	0.148	4.262	22	49	0.200	0.173	4 982	19	48	0.225	0.196	5 702	17	47
_	10			5 328	34	55	-		6 2 2 8	30	54	_	_	7 128	26	52
	- 4			2 557 3 83 6	12	30	1		2 740	5	30 41			4 704	9	40
550	3	0.193	0.163	5 115	21	48	0.220	0.190	5 481	19	48	0.248	0.218	6.273	17	47
	10			6.394	32	54			6.851	30	54			7.841	26	53
	4			2 557	5	30			2 989	4	28			3 421	4	29
600	3	0.210	0.178	5 115	10	48	0.240	0.208	5 979	14	45	0.270	0.238	5 132 6 843	17	47
	10			5 394	29	53	1		7.474	27	53	1		8 554	26	53
=	4			2 771	- 5	30			3 239	- 4	30			3 707	4	30
650	- 6	0.228	0.192	4 156	10	48	0.260	0.225	6.477	17	48	0.298	0.257	5 560 7 413	9 17	48
0	10			5 541	29	54	1		8 096	27	53	1		9 266	26	54
	4			2 984	5	30			3 488	4	30			3 9 9 2	- 4	30
700	- 6	0.245	0.207	4.476	10	41	0.28	0.242	5.232	10	40	0.315	0.277	5 988	9	40
100	8 10	0.2.40	0.00	5 967 7 459	19 29	48 54	0.20	0.242	8 719	17	48	0.515	0.277	9 9 9 7 9	16 25	53
\vdash	4			3.410	-4	30			3 986	d	300			4562	4	29
800	- 6	0.700	0.322	5 115	10	41	0.77	0.177	5 979	9	41	0.700	0.117	6843	9	40
800	3	0.280	0.237	6.820	18	48	0.32	0.277	7.972	17	48	0.360	0.317	9 124	16	47
\vdash	10		_	8 525	28	54	⊢	_	9.965	26	54	-	_	11 405	25	53
	- 6			5 754	10	41			6 726	12	35 44			7 698	9	40
900	3	0.315	0.255	7 672	18	49	0.360	0.311	8 9 6 8	26	54	0.405	0.356	10 264	16	47
_	10			9.590	28	55	_		11,210	33.4	58	_		12.830	25	53
	4			4 262	9	30 41			7 470	9	31 42	1		5 702	4	40
1000	5	0.350	0.296	5 394 8 525	17	48	0.400	0.346	9 965	17	49	0.450	0.396	11 4 05	16	47
	10			10.656	26	54			12 456	26	55			14 256	25	53
	4			4 689	4	32			5.481	- 4	31			6.273	4	29
1100	- 6	0.385	0.326	7 033	10	42	0.440	0.381	8 221	17	42	0.495	0.436	9 409	9	39
	10			9:377	18 28	50 56	1		10 961	26	49			12 545	15 24	53
	-4			5 115	- 4	31	-		5.979	-4	31			6 843	-4	29
1200	- 6	0.420	0.355	7.672	9	41	0.480	0.415	8.968	9	42	0.540	0.475	10.264	9	39
1200	8 10	0.460	0.303	10 230	16 25	49 54	0.400	0,413	11 958	16 25	49 55	0.340	0.413	13 686	15 24	53
	4			5.541	4	32			6.477	4	32			7.413	4	28
1300	- 6	0.455	0.385	8.312	10	43	0.520	0.450	9.716	9	42	0.505	0.515	11 120	8	39
1300	3	0.455	0.385	11 082	17	50	V.520	0.450	12 954	16	50	0.585	0.515	14 836	15	46
	10			13 853	27	56	-		16 193	25	55	_		18 533	23	52 28
2000	- 4			5 967 8 951	10	43			10 463	9	43			7 983	-6 -8	39
1400	3	0.490	0.414	11 935	17	50	0.560	0.484	13 951	16	50	0.630	0.554	15 967	15	46
	10			14 918	27	56	\vdash		17 438	25	56			19 958	23	52
	4			6394	4	32			7.474	- 4	32			8 554	- 4	28
1500	6.8	0.525	0.444	9 59 0	17	43 50	0.600	0.519	11 210	9 16	43	0.675	0.594	12 830	14	38
	10			15 984	26	56	1		18 684	25	56	1		21 384	22	51
	-16		_	1000	5.0	20			10.004	4.7	30			10.304		- 41

v - velocidad [m/s]

H – Alto Nominal [mm]

Se – Sección útil de la compuerta [m2]

Sk – Sección de los conductos [m2]

L_{W/A} - Nivel de Presión sonora [dB]

Q - Caudal [m3/h]

dp – Caída de Presión [Pa]

				ern			_		H [mm]					710		
				650	-1-				700	-1-			-	750	4	
	(m/s)	Sk (m²)	Se [m²]	0 [m ³ /h]	(Pa)	(d8)	Sk [m²]	Se [m²]	(m ³ /h)	(Pa)	(dB)	5k [m²]	Se [m²]	(m ¹ /h)	dp [Pa]	[dB]
	4			1.716	5	29			1 860	- 5	29			2 004	5	29
200	0 6	0.130	0.119	2 575 3 433	20	30	0.140	0.129	2 791 3 721	20	40	0.150	0.139	4 009	20	40
	10	1		4 291	31	53	1		4 651	31	53	1		5 011	31	53
	- 4			2 146	5	30			2 326	5	30			2 506	5	30
250	6	0.163	0.149	3.218	11	40	0.175	0.162	3 488	11	-41	0.188	0.174	3.758	11	41
	10	*****	4	5 364	20	48			4 651 5 814	20	48 54			5.011	20	48 54
	- 4	_	_	2 575	5	30	_	_	2 791	-4	29	_		5 264	- 4	30
100	6	0.000	0.130	3 862	10	40			4 186	10	40		n 200	4 510	10	40
300	- 8	0.195	0.179	5 149	19	48	0.210	0.194	5 581	18	47	0.225	0.209	6 013	18	48
_	10	_	_	6 437	29	53		_	6.977	28	53	-		7.517	28	54
	4			3 004	10	30 40			3 256	10	30 40	1		3 5 0 8	10	30
350	0 8	0.228	0.209	4 506 6 008	18	48	0.245	0.226	4 884 6 512	17	48	0.263	0.244	7 016	17	41
	10	1		7 510	28	54	1		8 140	27	53	1		8 770	27	54
	4			3 433	4	30			3.721	4	30			4 009	4	31
400	0 0	0.260	0.238	5 149	10	41	0.280	0.258	5 5 8 1	10	41	0.300	0.278	6.013	10	41
	8		4.650	6 866 8 582	18	48		4.634	7 4 4 2	17	48		0.2.0	8 018	17	49 54
-	- 4	_	_	3 862	28	30	_		9 302	27	29	_		4 510	27	30
	- 6			5 793	9	40			6 279	9	40	1		6.765	9	40
450	8	0.293	0.268	7 724	17	48	0.315	0.291	8.372	15	47	0.338	0.313	9 020	15	48
_	10			9 655	26	54			10 465	24	53			11.275	24	53
	4			4 291	4	29			4 651	4	29	1		5 011	4	29
500	6 B	0.325	0.298	6 437 8 582	15	40	0.350	0.323	6 977	15	40	0.375	0.348	7 517	15	47
	10			10 728	24	53	1		11 628	23	53	1		12 528	23	53
	- 4			5 149	4	29			5 116	4	29			5 512	- 4	29
550	. 6	0.358	0.328	7.724	- 8	39	0.385	0.355	7 674	8	39	0.413	0.383	8.268	8	40
100	- 0	0.330	0.320	10 299	14	47	0.303		10 233	14	47	0.415	0.303	11 025	14	47
_	10	-	_	12 874 5 149	22	52	_	_	12 791	22	53	_	_	6 013	22	53
	- 6			7 724	8	28 39			5 581 8 372	8	29 39			9 020	8	29
600	- 8	0.390	0.358	10 299	13	46	0.420	0.388	11 163	13	47	0.450	0.418	12 027	13	47
=	10	_	_	12 874	21	52		_	13 954	21	53	_	_	15 034	21	53
E	4			5 579	- 3	28			6 0 4 7	3	28	1		6 515	- 3	28
m 650	0 B	0.423	0.387	8 368	13	39 46	0.455	0.420	12 093	13	39 46	0.488	0.452	13 029	12	39
	10			13 946	20	52			15.116	20	52	1		16 286	19	52
	- 4			6.008	- 3	28			6.512	- 3	29			7 016	3	28
700	6	0.455	0.417	9 0 1 2	7	39	0.490	0.452	9.768	7	39	0.525	0.487	10 524	7	39
'**	8			12 015	13	46			13 023	13	47			14 031	12	46
_	10	_	_	15 019 6 866	3	27	_		7 442	4	29	_		17 539 8 018	19	52 28
	- 6			10 299	- 6	38			11 163	7	37	1		12 027	6	39
800	8	0.520	0.477	13 732	12	45	0.560	0.517	14884	11	43	0.600	0.557	16 036	12	- 06
_	10	_		17 165	18	51			18 605	16	47	_		20 045	18	52
	4			7 724	3	26			8 372	3	27			9 020	3	27
900	0 8	0.585	0.536	11 586	10	36	0.630	0.581	12 55 8	10	37 45	0.675	0.626	18 040	10	3.8 45
-	10	1		19 310	16	50	1		20 930	16	51	1		22 550	16	51
	- 4			8 582	3	26			9 3 0 2	3	27			10 022	- 3	28
100	0 6	0.650	0.596	12 874	- 6	36	0.700	0.646	13 954	6	38	0.750	0.696	15 034	6	38
100	10		4.350	17 165	10	44		1.000	18 605	10	45		0.000	20.045	10	46
_	4	_	_	9 441	16	29	_	_	10 233	16	31	_	_	25 056	16	52
	6			14 161	- 3	40			15 340	3 8	42			16 537	6	39
110	0 8	0.715	0.656	18 881	13	47	0.770	0.711	20 465	13	49	0.825	0.766	22 0 49	10	46
	10	_		23 602	21	53			25 582	21	55			27 562	16	52
	4			10 299	3	28			11 163	3	30			12 027	2	28
120	0 8	0.780	0.715	20 598	12	39 46	0.840	0.775	16 74 4 22 32 6	12	41	0.900	0.835	26 056	10	38
	10	1		25 747	19	52	1		27 907	19	54	1		30 067	15	52
	- 6			11 157	3	28			12 093	3	31			13 029	2	28
130	0 6	0.845	0.775	16.736	7	39	0.910	0.840	18 140	7	41	0.975	0.905	19 544	5	39
130	- 8	0.045	4.173	22 314	12	46	0.510	0.010	24 156	12	49		0.303	26 058	10	46
	10	-	_	27 893	19	52	_	_	30 233	19	55	_	_	32 573	15	52
	6	1		18 023	3	39			19 53 5	3	42	1		21 047	- 5	28
140	0 8	0.910	0.834	24 031	12	46	0.980	0.904	25 047	12	49	1.050	0.974	28 063	10	46
	10			30 038	19	52			32 558	19	55			35 078	15	52
	4			12 874	3	28			13 95-0	3	31			15 034	3	30
150	0 6	0.975	0.894	19 310	7	39	1.050	0.959	20 930	7	42	1.125	1.044	22 550	6	41
	10			25 747 32 184	12	46			27 907	12	49	1		30 067	17	54
	19	_	_	36 104	19	52		_	34884	19	- 55	_	_	37 584	-17	24

H – Alto Nominal [mm]

Se – Sección útil de la compuerta [m2]

v - velocidad [m/s]

Sk - Sección de los conductos [m2]

 $\mathbf{L}_{\mathbf{W/A}}$ – Nivel de Presión sonora [dB]

Q - Caudal [m3/h]

dp - Caída de Presión [Pa]

				650					H [mm] 700					750		
	v [m/s]	Sk (m²)	Se [m²]	0 [m ³ /h]	dp [Pa]	L ₁₀₀ . [d8]	Sk [m²]	Se [m²]	0 [m ³ /h]	dp [Pa]	L,,,, [dB]	5k [m²]	Se [m²]	0 [m³/h]	dp [Pa]	L _{0,0}
T	4			1.716	- 5	29			1 860	- 5	29			2 004	- 5	29
200	6 8	0.130	0.119	2 575 3 433	20	30 47	0.140	0.129	2 791 3 721	20	40	0.150	0.139	4 009	20	40
	10			4 291	31	53			4 651	31	53			5 011	31	53
	4			2 146	5	30			2 326	5	30			2 506	5	30
250	6	0.163	0.149	3 218 4 291	20	48	0.175	0.162	3 488 4 651	20	48	0.188	0.174	3 758	20	48
	10			5 364	31	53			5.814	31	54			6.264	31	54
	- 4			2 575	10	30 40			2 791 4 186	10	29			3 007 4 510	10	30
300	8	0.195	0.179	3 862 5 149	19	48	0.210	0.194	5 581	18	47	0.225	0.209	6.013	18	48
_	10			6 437	29	53			6.977	28	53			7.517	28	54
	6			3 004 4 506	10	30 40			3 256 4 884	10	30 40	-		3 508 5 262	10	30
350	8	0.228	0.209	6 008	18	48	0.245	0.226	6 512	17	48	0.263	0.244	7 016	17	48
⊢	10			7 510	28	54			8 140	27	53			8 770	27	54
l	4 0			5 149	-4 10	30 41			5 581	4	30 41			6.013	10	31
400	8	0.260	0.238	6 866	18	48	0.280	0.258	7 4 4 2	17	48	0.300	0.278	8 018	17	49
⊢	10			8 582	28	54			9 302	27	54			10 022	27	30
l	6			3 862 5 793	9	30 40			6 279	9	29 40			4 510 6 765	4 9	40
450	- 8	0.293	0.268	7.724	17	48	0.315	0.291	8.372	15	47	0.338	0.313	9 020	15	48
\vdash	10		_	9 655	26	54 29			10 465	24	53 29	_	_	11 275	24	29
	6			6 437	0	40			6 977	8	40			5.011 7.517	8	40
500	В	0.325	0.298	8 582	15	47	0.350	0.323	9 3 0 2	15	47	0.375	0.348	10 022	15	47
\vdash	10		_	10.728	24	53			11 628	23	53	_	_	12 528	23	53
	- 6			5 149 7 724	4 .	29 39			5 116 7 674	- 4	29 39			5 512 8 268	4 8	29
550	- 8	0.358	0.328	10 299	14	47	0.385	0.355	10 23 3	14	47	0.413	0.383	11 025	14	47
⊢	10		_	12 874	22	52	_		12 791	2.2	53	_	-	13 781	22	53
	6	0.700		5 149 7 724	8	28 39	0.470	0.200	5 581 8 372	8	29 39		0.410	9 020	8	29
600	8	0.390	0.358	10 299	13	46	0.420	0.388	11 163	13	47	0.450	0.418	12 027	13	47
-	10		_	12 874	21	52			13 954	31	53	_		6 515	21	28
450	- 6	0.433	6 207	8 368	7	39	0.455	0.010	9 070	7	39	0.000	0.053	9 772	7	39
650	8	0.423	0.387	11 157	13	46	0.455	0.420	12 093	13	46	0.488	0.452	13 029	12	46
-	10		_	13 946	20	52 28	_	_	6.512	3	29	_	_	7 016	19	28
700		0.455	0.417	9 012	7	39	0.490	0.452	9.768	7	39	0.525	0.487	10 524	7	39
700	8	0.435	0.417	12 015	13	46	0.1.90	0.452	13 023	13	47	0.323	U. sear	14 031	12	46
-	10			15 019 6 866	3	27			7 4 4 2	20	53 29			17 539 8 018	19	28
800	6	0.520	0.477	10 299	6	38	0.560	0.517	11 163	7	37	0.600	0.557	12 027	6	39
1000	8	0.320	0.477	13 732	12	45 51	0.300	0.517	14 88 4	11	43	0.000	0.337	16 036	12	52
\vdash	10		_	7 724	18	26		_	18 605 8 372	16	27	_	_	9 020	18	27
900	- 6	0.585	0.536	11.586	6	36	0.630	0.581	12 55.8	- 6	37	0.675	0.626	13 530	6	3.6
***	10	0.345	4.334	15 448	10	44 50	0.000	0.30	20 930	10	45 51	0.073	0.020	18 040	10	45
-	4			8 582	3	26			9 302	3	27			10 022	3	28
1000	- 6	0.650	0.596	12 874	- 6	36	0.700	0.646	13 954	- 6	38	0.750	0.696	15 034	6	38
1000	10	0.000	0.350	21 456	10	50	0.700	0.040	18 605	10	45		0.030	20 045	10	52
-	4			9 441	3	29			23 256 10 233	16	31	_		11 025	3	28
1100	6	0.715	0.656	14 161	- 8	40	0.770	0.711	15 349	8	42	0.825	0.766	16 5 3 7	6	39
1,100	10	0.213	0.000	18 881	13	53	0.770	43711	20 465	13	49	0.023	0.700	22 0 49	10	52
	4			23 602 10 299	3	28			25 58Z 11 163	3	30			27 562 12 027	16	28
1200	- 6	0.780	0.715	15 448	7	39	0.840	0.775	16.744	7	41	0.900	0.835	18 040	5	3.8
1.200	8 10			20 598	12	46 52			27 907	12	48 54			30 067	10	52
	- 6			11 157	3	28			12 093	3	31			13 029	2	28
1300	- 6	0.845	0.775	16.736	7	39	0.910	0.840	18 140	7	41	0.975	0.905	19 544	5	39
	10	2.245	472	22 314 27 893	12	46 52	0.510	2.010	24 156 30 233	12	49 55		0.000	26 058 32 573	10	46 52
	4			12 015	3	28			13 023	3	31			14 031	2	28
1400	- 6	0.910	0.834	18 023	7	39	0.980	0.904	19 53 5	7	42	1.050	0.974	21.047	- 5	39
1400	B 10	0.910	0.00	24 031 30 038	12	46	0.300	0.304	26 047 32 55 8	12	49 55	1.050	0.874	28 063 35 078	10	46 52
	- 4			12 874	3	52 28			18 95.4	3	31			15 034	3	30
1500	- 6	0.975	0.894	19 310	7	3.9	1.050	0.969	20.930	7	42	1.125	1.044	22 550	6	41
1,300	8	0.375	0.00	25 747	12	46	1.030	0.303	27 907	12	49	1.125	1	30 067	11	48
	10			32 184	19	52			34884	19	- 55			37 584	17	54

v - velocidad [m/s]

Q - Caudal [m3/h]

H – Alto Nominal [mm]

Sk – Sección de los conductos [m2]

dp – Caída de Presión [Pa]

Se – Sección útil de la compuerta [m2]

 $\mathbf{L}_{\mathbf{W}/\mathbf{A}}$ – Nivel de Presión sonora [dB]

				202			_		H [mm]							
				800	d-		-		850	4-				900	-1-	-
	[m/s]	Sk [m²]	[m²]	[m ⁹ /h]	dp [Pa]	L _{(1), 1,} [dB]	5k [m ²]	Se [m²]	[m ³ /h]	dp [Pa]	[dB]	5 k [m²]	Se [m²]	[m ³ /h]	dp [Pa]	[dB
	4			3 223	5	29			2 792	- 5 11	29 40			2 436	5	30 40
200	8	0.160	0.149	4 297	19	47	0.170	0.150	3 439 4 585	19	48	0.180	0.169	3 655 4 873	11	48
	10			5.371	30	53			5.731	30	53			6 091	30	5.6
	4			2 686	5	30			2 866	5	30			3 0 4 6	5	31
250	8	0.200	0.187	4 02 8 5 371	19	41	0.213	0.199	4 298 5 731	19	41	0.225	0.212	4 5 6 8 6 0 9 1	11	41
	10			6714	30	54			7164	30	54	1		7 614	30	55
	4			3 223	4	30			3 439	4	30			3 655	4	30
300	- 6	0.240	0.224	4834	10	41	0.255	0.239	5.158	10	41	0.270	0.254	5 482	10	- 41
1	10	0.2.10		8.057	18	48			8 597	18	48			9 137	17	42
\vdash	4			3 760	4	30			4 012	-4	31			4264	4	30
350	- 6	0.280	0.261	5 640	10	41	0.298	0.279	6.018	10	41	0.315	0.296	6 3 9 6	9	47
1	8	0.200	0.001	7 520	17	48	0.200	0.275	8 024	17	49	0.313	0.270	8 528	17	45
\vdash	10		_	9.400	4	54	_	_	4 585	27	31	_	_	10 660	26 4	30
	6	0.330	0.210	6 445	10	41	0.240	0.010	6 877	10	42	0.250		7 3 0 9	9	- 41
400	8	0.320	0.298	8 594	17	49	0.340	0.318	9 170	17	49	0.350	0.338	9 746	16	48
-	10		_	10.742	27	55			11.452	27	55	_	_	12 182	25	- 54
	6			7 251	8	39			7 737	4 8	40			5 482 8 223	3 8	25
450	8	0.360	0.336	9 668	14	47	0.383	0.358	10 316	14	47	0.405	0.381	10 964	13	4
_	10			12 085	22	53			12.895	22	53			13.705	21	- 5
	- 4			5.371	4	40			5.731	-6-8	29			9 137	8	25
500	8	0.400	0.373	10 742	14	47	0.425	0.398	8 597	14	47	0.450	0.423	12 182	13	4
	10			13 428	22	53			14 328	22	53			15 228	21	5
	-4			5 908	3	29			6 304	3	29			6.700	3	25
550	8	0.440	0.410	8 862 11 817	13	47	0.468	0.438	9 456	13	40	0.495	0.465	13 401	7	3
	10			14 771	21	53			15 751	21	53			16 751	20	53
	.6			6.445	3	29			6.877	3	29			7 3 0 9	3	21
600	- 6	0.480	0.448	9 668	7	39	0.510	0.478	10 316	7	40	0.540	0.508	10 964	7	31
	10			12 891	13	53			13 755	13	53			18 274	12	5
	4			6.983	3	28			7.451	3	29			7 919	3	25
659	-6	0.520	0.485	10 474	7	39	0.553	0.517	11 176	7	39	0.585	0.550	11 878	7	36
1	8 10		000	13 965	12	46			18 626	12	47			15 837	12	5
-	4		_	7 520	3	28		_	8 024	3	28	_	_	8 528	3	2
700	- 6	0.560	0.522	11.280	6	39	0.595	0.557	12 036	- 6	39	0.630	0.592	12.792	6	31
7.00	- 8	0.300	0.321	15 039	12	46	0.393	0.337	16 0 47	12	46	0.650	0.392	17 055	10	40
\vdash	10		-	8.594	18	52	_	_	9 170	18	52 27	_	_	9 746	16	21
	6	0.000	0.503	12.891	6	38	0.000	0.633	13 755	6	38	0.730	0.077	14 619	6	31
800	8	0.640	0.597	17 188	10	45	0.680	0.637	18 3 40	10	45	0.720	0.677	19 492	10	41
\vdash	10		_	21.485	16	51	_		22 925	16	51	_	_	24 365	16	5
100	6			9 668	6	28 38			10 316	6	28 38			16 446	6	20
909	-8	0.720	0.671	19 336	10	46	0.765	0.716	20 632	10	46	0.810	0.761	21 928	10	4
	10			24 170	16	51			25.790	16	52			27.410	16	5.
	6			16 114	3	28			17 194	3	28			18 274	6	2
1000	8	0.800	0.746	21 485	10	46	0.850	0.796	22 925	10	46	0.900	0.846	24 365	10	47
	10			26 856	16	52			28 656	16	52			30.456	16	5
	4			11 817	3	28			12 609	3	29			13 401	3	25
1100	8	0.880	0.821	17 725 23 633	10	46	0.935	0.876	18 913 25 217	10	47	0.990	0.931	26 801	10	41
	10			29 542	16	5.2			31 522	16	53			33 502	16	- 5
	4			12.891	2	28			13 755	2	28			14619	2	21
1200	6 8	0.960	0.895	19 336	5	39	1.020	0.955	20.632	5	39	1.080	1.015	21 928	9	46
	10			32 227	10	46			27 510 34 387	10	46			29 23B 36 547	14	5
	4			13.965	- 2	28			14 901	- 2	29			15.837	- 2	23
1300	6	1.040	0.970	20 948	5	39	1.105	1.035	22 352	5	39	1.170	1.100	23.756	5	25
	8			34 913	10	46			37 253	10	47			31 674	10	45
	4			15 039	- 2	29			16 047	3	30			17 055	2	23
1400	- 6	1.120	1.044	22 559	5	39	1,190	1.114	24 071	6	40	1.260	1.184	25 583	5	36
1	8			30 079	10	52			32 095	10	48	200	1.164	34 111	9	40
	4			37 598 16 114	3	31			40 118	3	30			42 63 8 18 274	14	53
1500	- 6	1.200	1.110	24 170	- 6	41	1 277	1.304	25 790	6	41	1 350	1 200	27 410	- 5	40
1300	8	1.200	1.119	32 227	11	49	1.275	1,194	34 387	10	48	1.350	1,269	36 547	10	48
	10			40.284	17	54			42 984	16	54			45 684	15	53

H – Alto Nominal [mm]

Se – Sección útil de la compuerta [m2]

v - velocidad [m/s] **Q** - Caudal [m3/h]

Sk – Sección de los conductos [m2]

L_{w/A} - Nivel de Presión sonora [dB]

dp - Caída de Presión [Pa]

				1000					H [mm]					1200		
	v	Sk	Se	0	dp	L _{vv}	Sk	Se	0	dp	L	Sk	5e	0	dp	L
	[m/s]	[m ²]	[m ²]	(m5h)	[Pa]	[dB]	[m²]	[m ²]	(m ² /h)	(Pa)	[d0]	[m²]	(m²)	[m ³ /h]	[Pa]	[d8]
200	6	0.300	0.100	4 087	10	30 40	0.220	0.300	3 012 4 519	10	30 41	0.240	0.339	4 951	10	41
200	8 10	0.200	0.189	5.449 6.811	19	48 54	0.220	0.209	6 025 7 531	19	48 54	0.240	0.229	6.601 8.251	18 28	48 54
	4			3.406	- 5	31			3.766	4	31			4 126	4	31
250	6 8	0,250	0.237	5 108 6 911	10	41	0.275	0.262	7 531	10	41	0.300	0.287	6 188 8 251	10	41
	10			8 514	29	55	1		9 414	28	55			10 314	27	55
	4			6 130	4	31			4 519	10	31			7.426	4	31
300	8	0.300	0.284	8 173	10	41	0.330	0.314	6.778 9.037	17	42	0.350	0.344	9 9 0 1	17	42
-	10			10.217	27	54	—		11 297	37	55		_	12.377	26	55
250	6	0.250		7 152	9	31 41	0.105	0.000	7.908	9	42	0.120		5.776 8.664	9	31 41
350	8	0.350	0.331	9 536	17	49	0.385	0.366	10.544	17	49	0.420	0.401	11 552	15	49 54
\vdash	10			5 449	26	78			6 025	26 3	55 28			14 440 6 601	3	29
400	6 8	0.400	0.376	8 173	7	39	0.440	0.418	9.037	7	39	0.480	0.458	9 9 0 1	7	39
	10			10.898	20	46 52	1		12 050	13	46			13 202	13	-47
	- 4			6 130	3	28			6.778	3	29			7.426	3	29
450	- 6	0,450	0.426	9 195	13	39	0.495	0.471	10 167	13	39	0.540	0.516	11 139	13	47
	10			15.325	20	52	1		16.945	20	53			18 565	20	53
	6			10 217	3 7	29 39	1		7 531	3 7	29 40			8 251 12 377	- 3	30 40
500	- 8	0.500	0.473	13 622	13	47	0.550	0.523	15 062	13	47	0.600	0.573	16 502	13	-48
\vdash	10		_	7 492	30	53 29	_		18 828 8 284	30	53	_	_	20 528 9 078	3	54
550	6	0.550	0.520	11 238	7	90	0.605	0.575	12.426	7	40	0.650	0.630	13 614	7	41
550	8 10	0.550	0.320	14 985 18 731	13	53	0.505	0.373	20.711	18 20	48 54	0.600	0.659	18 153 22 691	13 20	54
\vdash	4			8 173	3	29			9 037	3	29			9 9 0 1	3	29
600	- 6	0,600	0.568	12 260	7	40	0.660	0.628	13 556	6	39	0.720	0.688	14 852	- 6	40
	10			20 434	12	47 53			18 075 22 594	12	47 53			24 754	12	53
	4			8 855	3	29			9.791	3	29			10 727	3	30
650	8	0.650	0.615	13 282	12	47	0.715	0.680	14 686	12	40	0.780	0.745	21 453	12	48
_	10			22 136	19	53			24.476	18	53			26.816	18	53
l	6			9 536	6	38			10 544	2	27			17.528	2	38
700	- 8	0.700	0.662	19:071	10	46	0.770	0.732	21 087	10	45	0.840	0.802	23 103	10	46
\vdash	10			23 839 10 898	16	51 28	_		26 359 12 050	15	28			13 202	15	28
800	- 6	0.800	0.757	16 347	- 6	39	0.880	0.837	18 075	- 5	38	0.960	0.917	19 803	- 5	39
000	10	0.000	0.737	21 796	16	46 52	0.000	0.037	30 125	10	46 52	0.500	0.517	13 005	10	46
\vdash	4			12 260	3	29			13 556	3	29			14 852	2	29
900	6	0.900	0.851	18 390	6	39	0.990	0.941	20.334	6	40	1.080	1.031	22 278	5	39
	10			30 650	10	52	1		27 112 33 890	10	53			37 130	10	52
	4			13 622	3	29			15 062	- 2	29			16 502	2	28
1000	8	1.000	0.946	27 245	10	47	1.100	1.046	22 594 30 125	10	47	1.200	1.146	33 005	9	46
<u> </u>	10	_		34 056	16	53	_		37 656	15	52	_		41.256	14	52
	6			14 985 22 477	6	29			16 569 24 853	2	29 40			18 153 27 229	2 5	29
1100	8	1,100	1.041	29 969	10	48	1.210	1,151	33 137	10	47	1.320	1.261	36 305	9	47
\vdash	10		_	16:347	16	28	_	_	18 075	10	47	-	_	45.382 19.803	2	52
1200	- 6	1,200	1.135	24 520	- 5	39	1.320	1.255	27 112	22	58	1.440	1.375	29.704	- 5	39
1	10			32 694 49 Jos	9.	46 52			36 150 45 187	38	52			49 507	13	46
	4			17 709	2	28			19 581	- 2	28			21 453	- 2	28
1300	6 8	1,300	1.230	26 564 35 418	9	39 46	1.430	1.360	29 372 39 162	5 8	38 46	1.560	1.490	32 180 42 906	5 8	39 46
	10			44 273	14	52			48.953	13	52			53 633	13	52
	4			19 071 28 607	2	29			21 087	2	28			23 103	2	28
1400	8	1,400	1.324	38 143	9	47	1.540	1.064	42 175	8	46	1.680	1.604	46 207	- 8	46
	10			47 678	14	53	-		52 718	13	52			57.758	12	51
1505	6	1.500	1.410	30 650	5	28 39	1,000	1.000	22 594 33 890	5	29 39	1.000	1.710	37 130	4	38
1500	8	1.500	1.419	40-867	8	46	1.650	1.569	45 187	- 8	47	1.800	1.719	49 507	8	46
	10			51 084	13	52			56 484	13	52			61 884	12	52

H – Alto Nominal [mm]

Se - Sección útil de la compuerta [m2]

v - velocidad [m/s]

Sk – Sección de los conductos [m2]

L_{w/A} - Nivel de Presión sonora [dB]

Q - Caudal [m3/h]

dp – Caída de Presión [Pa]

				1300					H [mm]					1500		
	(m/s)	Sk [m²]	Se [m ²]	Q [m ² /h]	dp [Pa]	L _{V/A} [dB]	Sk [m²]	Se [m²]	0 [m ⁵ h]	dp [Pa]	L _{WA} [diti]	Sk [m²]	Se [m³]	(m ³ /h)	dp [Pa]	L _{vv} . [dB]
Т	4			3 588 5 383	4 9	30 40			3 876 5 815	4 9	29 40			6 247	4 9	29 40
200	8	0.260	0.249	7 177	17	48	0.280	0.269	7 753	16	47	0.300	0.289	8 329	15	47
	10			8 971	26	53			9 691	25	53			10 411	24	53
	4			4 486	4 9	31			4 846	9	30			4 164	4	30
250	8	0.325	0.312	8 971	17	41	0.350	0.337	7.268 9.691	15	40	0.375	0.362	6 247 8 329	8 15	40 48
	10			11.214	26	54			12 114	24	54			10 411	23	53
	4			5 383	- 4	31			5.815	- 4	31			6 247	4	30
300	6 8 10	0.390	0.374	8 074 10 765 13 457	9 16 25	41 49 55	0.420	0.404	8 722 11 629 14 537	9 15 24	41 40 54	0.450	0.434	9 370 12 493 15 617	14	40 48 54
	4			6 280	4	30			6.784	3	30			7 288	3	30
350	- 6	0.455	0.436	9.420	8	41	0.490	0.471	10 176	. 8	40	0.525	0.506	10 932	8	40
1	10			12 560	15	48 54			13 568 16 960	13	48	******	0	14 576 18 220	13	48 54
\vdash	4			7 177	3	29			7 753	3	29			8 329	3	30
400	- 6	0.530	0.400	10 765	7	40	0.550	0.530	11 629	7	40	0.000	0.530	12 493	7	40
400	- 8	0.520	0.498	14 354	13	47	0.560	0.538	15 506	13	48	0.600	0.578	16 658	13	-48
<u> </u>	10			17 942	20	53			19 382	20	53	_		20 822	20	54
	6			8 074	3 7	40			13 083	3 7	29 40			9.370	3 7	30
450	8	0.585	0.561	16 148	12	47	0.630	0.606	17 444	12	47	0.675	0.651	18 740	12	-48
	10			20 185	19	53			21.805	19	53			23 425	19	53
	4			8 971	3	29			9 691	3	30			10 411	3	30
500	6 8	0.650	0.623	13 457	12	48	0.700	0.673	14 537	12	40	0.750	0.723	15 617	12	41
1	10			22 428	19	53			24 228	19	54	1		26 028	19	54
	-4			9 8 6 8	3	30			10 660	3	30			11 452	3	31
550	- 6	0.715	0.685	14 802	7	40	0.770	0.740	15 990	7	41	0.825	0.795	17 178	7	41
330	8	0.773	0.003	19 737	12	48	0	0.740	21 321	12	48		0.733	22 905	12	49
\vdash	10			10.765	19	29			26 651 11 629	19	29	_		28 631 12 493	19	54 29
	- 6	0.700		16 148	6	39			17 444	6	40		0.000	18 740	6	40
500	8	0.780	0.748	21 531	11	47	0.840	0.808	23 259	11	47	0.900	0.868	24 987	11	48
	10			26 914	17	53			29 074	17	53			31 234	17	53
	4			17 494	3	40			12 599	6	29 40	1		13 535 20 302	- 3 - 6	30 40
650	6 8	0.845	0.810	23 325	6 11	47	0.910	0.875	25 197	11	45	0.975	0.940	27 009	11	45
	10			29 156	17	53			31 496	17	53			33 836	17	54
	4			12 560	2	28			13 568	2	28			14 576	- 2	28
700	- 6	0.910	0.872	18 840	5	38	0.980	0.942	20.352	5	30	1.050	1.012	21 864	5	39
	10			25 119 31 300	10	46 52			27 135 33 919	10	46 52			36 439	10	47 52
\vdash	-4			14 354	2	28			15 506	2	29			16 658	2	29
800	- 6	1.040	0.997	21 531	5	39	1.120	1.077	23 259	5	30	1.200	1.157	24 987	5	-40
500	8	1.2340	0.337	28 708	10	46	1.120	1.377	31 012	10	47	1.200	1.137	33 316	10	47
	10			35 885 16 148	15	52 29			38 765 17 444	15	29	_		41 645 18 740	15	30
	6			24 222	5	39			26 156	5	40			28 110	- 2	40
900	8	1.170	1.121	32 296	10	47	1.250	1.211	34 888	10	47	1.350	1.301	37 480	10	48
	10			40.370	15	53			43 610	15	53			46 850	15	53
	- 4			26 914	5	28			19 382	2	28			20 822	2	28
1000	8	1.300	1.246	35 885	9	39 47	1.400	1.346	29 074 38 765	8	38 46	1.500	1.446	31 234 41 645	5	39 46
	10			44 856	14	52			48 456	13	52			52 056	13	52
	- 4			19 737	2	29			21 321	- 2	27			22 905	- 2	26
1100	6	1.430	1.371	29 605	5	39	1.540	1.481	31 981	4	38	1.650	1.591	34 357	- 4	37
	10			49 342	9	47 53			53 302	12	45 51			57.262	7	44 50
	4			21 531	- 2	28			23 259	2	28			24 987	- 2	26
1200	- 6	1.560	1.495	32 296	5	39	1.680	1.615	34 888	4	38	1.800	1.735	37 480	- 4	36
1200	- 8		1,493	43 062	8	46		1,013	46 518	8	46	1.300	1.733	49 974	- 6	44
\vdash	10			53.827	13	28			58 147	12	27	_		62 467	10	49
	6			23 325 34 988	4	38			25 197 37 796	4	37	1				
1300	8	1.690	1.620	46 650	- 8	46	1.820	1.750	50 394	7	45	1				
\vdash	10	_		58 313	12	51	_		62 993	11	51	J				
	4			25 119 37 679	- Z - 4	28 39										
1400	8	1.820	1,744	50 239	8	46	1									
	10	1		62 798	12	52	1									

DAMPERS TEMPLADORES CIRCULARES

mcr FID-PRO

mcr FID-0

Compuertas Cortafuego

Las Compuertas Cortafuego MERCOR han sido especialmente diseñadas para compartimentar conductos que pasan por diferentes sectores de incendio tal como exigen las normativas vigentes en materia de protección contra incendios en edificios. Además, las Compuertas mcr FID poseen el marcado CE en cumplimiento del reglamento 305/2011/EU.

Aplicación

- · Las compuertas circulares mcr FID-PRO y mcr FI-O han sido diseñadas para ser integradas en sistemas de ventilación, especialmente en zonas de paso de tabiques, tanto vertical, como horizontalmente.
- Durante el fuego, las compuertas previenen la expansión del fuego, las llamas y el humo a través de los conductos de ventilación, permaneciendo aislada la zona contigua del edificio.
- En situaciones normales de operación la compuerta permanece abierta; en caso de fuego, se cierra la hoja interior o clapeta para impedir la propagación del fuego al habitáculo contiguo.

Normativa

- Resistencia al fuego EIS120 (E=Integridad, I=Aislamiento térmico, S=Estanqueidad de los humos).
- Compuertas cortafuego certificadas según normativa EN 15650 (Ventilación de edificios. Compuertas Cortafuego), EN 13501-3 (Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 3: Clasificación a partir de datos obtenidos en ensayos de resistencia al fuego de productos y elementos utilizados en las instalaciones de servicio de los edificios: Conductos y compuertas resistentes al fuego) y EN 1366-2 (Ensayos de resistencia al fuego de instalaciones de servicio. Parte 2: Compuertas cortafuegos).
- Marcado CE con certificados según modelos: mcr-FIDPRO (2434-CPR-0009) y mcr-FID-O (1488-CPR-0442/W, 1396-CPR-0103)

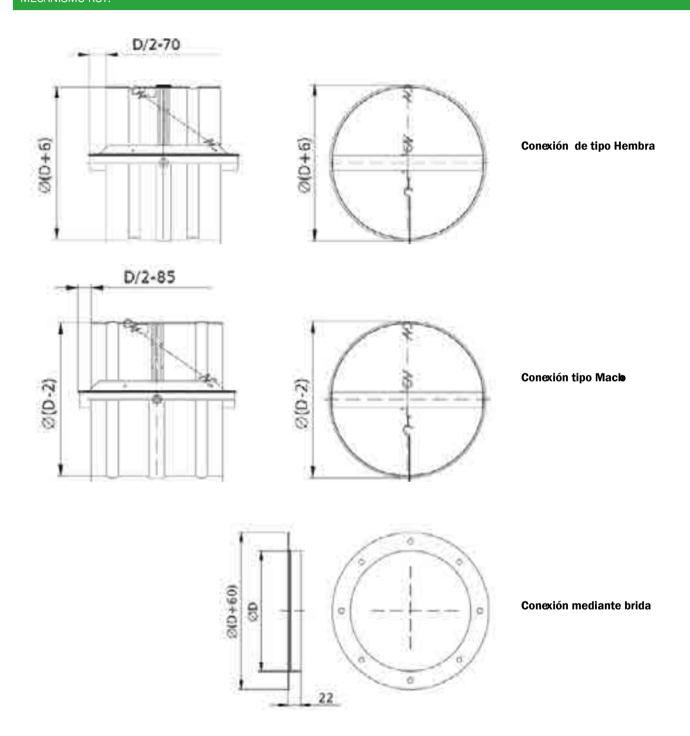
Diseño COMPUERTA CIRCULAR "mcr FID-PRO"

Mecanismos de disparo

Además del mecanismo de actuación manual, las compuertas cortafuego se pueden suministrar accionadas por otros mecanismos de tipo eléctrico. En estos casos la compuerta puede actuar por un doble sistema: mediante fusible térmico o mediante accionamiento electro-mecánico.

Tipos de accionamiento

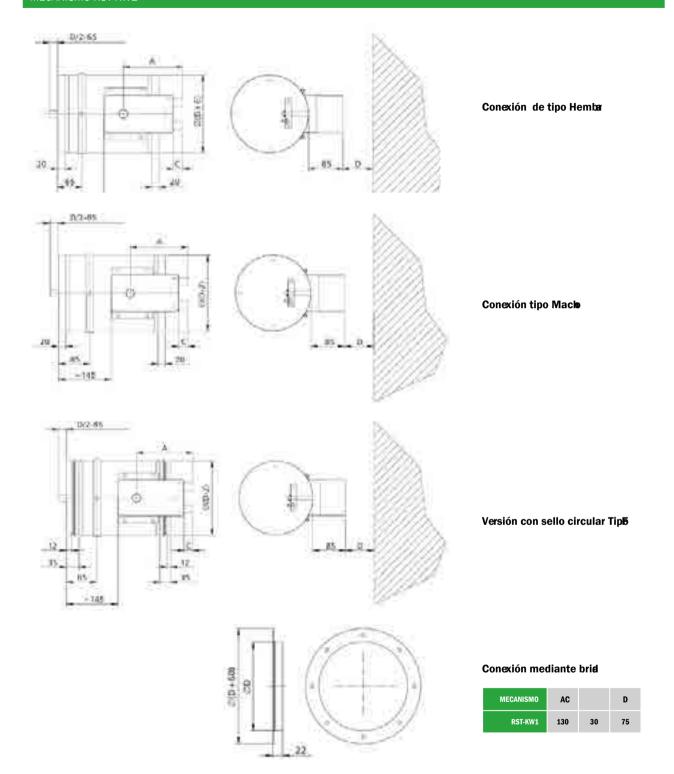
DISPOSIT	TIVOD	ESCRIPCIÓN
	RST	Fusible térmico a 74º c tipo bimetal, opcionalmente a 95 °
	RST / WK1	Fusible térmico a 4° bimetálico y contactos (1Xno + 1xnc) de señal de com puee rrada
	RST / WI∕2	Fusible térmico bimetálico y contactos (1Xno + 1xnc) de señales tanto de compuerta abierta como de cerrada (
	RST-KW1/S	Con fusible térmico bimetálico 74° + manivela de rearme
Donald.	RST-KW1/S/WK2	Fusible térmico 74º +manivela de rearme + contactos final de carrera (2 x N0 / NC)
	RST-KW1/24I	fusible térmico 74° + manivela de rearme + contactos final de carrera (2 x NO $/$ NC + sistema de cierre por pulso eléctrico de 24 Volt. C.C
	RST-KW1/24P	Fusible térmico 74° + manivela de rearme + contactos final de carrera (2 x NO / NC) + sistema de cierre por corte de tensión (24 Volt. C.C)
	RST-KW1/230I	Fusible térmico 74° + manivela de rearme + contactos final de carrera (2 x NO $/$ NC) + sistema de cierre por pulso eléctrico de 230 Volt. A.C.
	RST-KW1/230P	Fusible térmico 74° + manivela de rearme + contactos final de carrera (2 x NO $/$ NC) + sistema de cierre por corte de tensión (230 Volt. A.C
	BF24-T	Actuador eléctrico alimentado a 24 Volt. C.C./ A.C., con un consumo de 2,5 w. en reposo y 7 w. en funcionamiento y dispositivo de disparo termo eléctrico con contactos auxiliares (2 X SPDT) cuando la compuerta alcanza los 5° y 80° . (par motor 6 Nm Y par de retorno muelle 4 Nm)
N	BF230-T	Actuador eléctrico alimentado a 220 Volt. C.C./ A.C., con un consumo de 3 w. en reposo y 5 w. en funcionamiento y dispositivo de disparo termo eléctrico con contactos auxiliares (2 X SPDT) cuando la compuerta alcanza los 5° y 80°. (par motor 6 Nm. Y par de retorno muelle 4 Nm.
	BFN24-T	Actuador eléctrico alimentado a 24 Volt. C.C./ A.C., con un consumo de 1,4 w. en reposo y 4 w. en funcionamiento y dispositivo de disparo termo eléctrico con contactos auxiliares (2 X SPDT) cuando la compuerta alcanza los 5° y 80° . (par motor 9 Nm. y par retorno muelle 7 Nm.
	BFN230-T	Actuador eléctrico alimentado a 220 Volt. C.C./ A.C., con un consumo de 2,1 w. en reposo y 5 w. en funcionamiento / y dispositivo de disparo termo eléctrico con contactos auxiliares (2 X SPDT) cuando la compuerta alcanza los 5° y 80° (par motor 9 Nm. y par de retorno muelle 7 Nm.
	BFL24-T	Actuador eléctrico alimentado a 24 Volt. C.C./ A.C., con un consumo de 0,7 w. en reposo y 2,5 w. en funcionamiento y dispositivo de disparo termo eléctrico con contactos auxiliares (2 X SPDT) cuando la compuerta llega a 5° y 80°. (par motor 4 Nm. Y par de retorno muelle 3 Nm.
	BFL230-T	Actuador eléctrico alimentado a 2200t. C.C./A.C., con un consumo de,1 w. en repos y 3,5 w en funcionamiento y dispositivo de disparo termo eléctrico con contactos auxiliar (2 x SPDT) cuando la computar llega a 5° y 80° (par motor 4 Ninpar de retorno muelle 3nM.



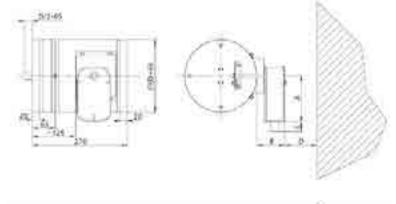
Dimensiones

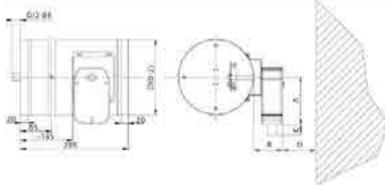
COMPUERTA CIRCULAR "mcr FID-PRO"

- Fabricadas en diámetros nominales Standard de: 100 mm, 125 mm, 160 mm, 200 mm, 250 mm, 315 mm.
 Aparte de las dimensiones estándar hay posibilidad de fabricar la compuerta con dimensiones intermedias entre 100 y 315 mm de diámetro nominal.
- ·Dimensiones en función del mecanismo utilizado: RST, RSTKW1, BLF, BFN, BFL...:

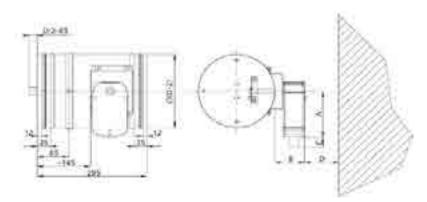

MECANISMO RST:

COMPUERTA CIRCULAR "mcr FID-PRO"


MECANISMO RST-KW1



COMPUERTA CIRCULAR "mcr FID-PRO"


MECANISMO BLF, BFL Y BFN


Conexión de tipo Hembar

Conexión tipo Maclo

Versión con sello circular Tipo F

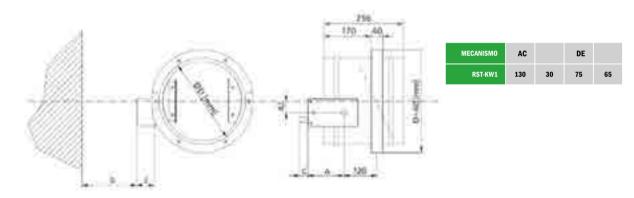
Conexión mediante brid

Mecanismo	AB		CD	
BLF	130	85	30	75
BFN	1577	83	07	5
BFL	1387	43	07	5
EXBF	2251	90	55	100

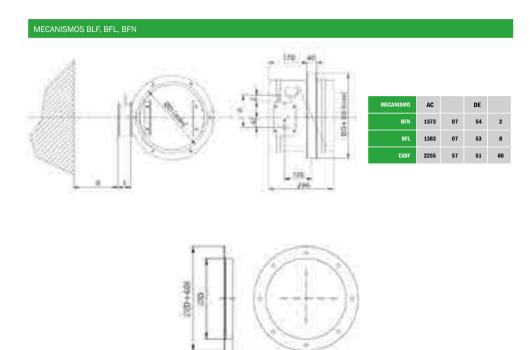
Dimensiones

COMPUERTA CIRCULAR "mcr FID-O"

- · Diámetros Nominales [D] desde 125 mm a 630 mm.
- · El120 (ve ho i↔o)
- · Además de las dimensiones Standard, las compuertas pueden ser fabricadas con dimensiones intermedias.



Dimensiones en función del mecanismo utilizado:


MECANISMO RST | MECANISMO | AC | DE | RST | 40 | 30 | 75 | 55 |

MECANISMO RST-KW2

COMPUERTA CIRCULAR "mcr FID-0"

Brida de montaje

PESO ESTIMADO COMPUERTAS COMPUERTA CIRCULAR "mcr FID-PRO"

Peso en función de las dimensiones del conducto (Kg):

Diámetro D [mm]	Con actuador tipo RST	Con actuador tipo RST-KW1 / BFN / BLF
100	0,7 Kg.	3 Kg.
125	0,9 Kg.	3,2 Kg.
160	1,2 Kg.	3,6 Kg.
200	1,7 Kg.	4,2 Kg.
250	2,1 Kg.	4,6 Kg.
315	2,6 Kg5	, 1 Kg.

COMPUERTA CIRCULAR "mcr FID-0"

Peso en función de las dimensiones del conducto (Kg):

Diámetro D [mm]	Con actuador tipo RST	Con actuador tipo RST-KW1 / BFN /BLF
125	4 Kg.	5 Kg.
160	5 Kg6	Kg.
200	6 Kg 7	Kg.
250	7 Kg8	Kg.
315	9 Kg 1	0 Kg.
355	12 Kg 1	3 Kg.
400	14 Kg 1	5 Kg.
500	16 Kg 1	7 Kg.
630	20 Kg2	1 Kg.

PARÁMETROS TÉCNICOS

COMPUERTA CIRCULAR "mcr FID-PRO"

d - Diámeto Nominal [mm]

Sk - Sección de los condut**o**s [m²]

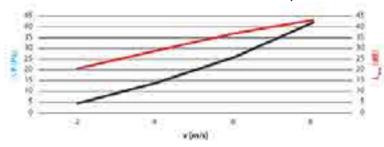
Q - Caudal [m³/h]

v - velocidad [m/s]

Se - Sección útil de la compurte [m²

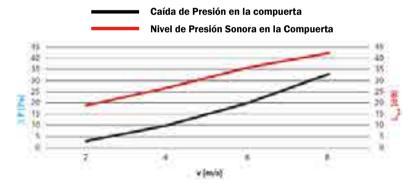
dp - Caída de Presión [Pa]

 $\mathbf{L}_{\mathbf{W/A}}$ - Nivel de Presión Sonora [d \mathbb{B}


weff - velocidad útil en la computea [m/s]

mcr FID-PRO 100

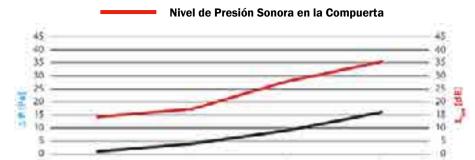
d [mm]	Sk [m²]	Se [m²]v	[m/s]	Q [m³/h]	weff [m/s]	dp[Pa]	L _{wa} [dB]
		0,0057	2,0	41	2,84	,5	21
100	0,0079		4,0	81	5,51	42	9
100	0,0079		6,0	1228	,3	26	37
			8,0	1631	1,14	24	3


Caída de Presión en la compuerta

Nivel de Presión Sonora en la Compuerta

mcr FID-PRO 125

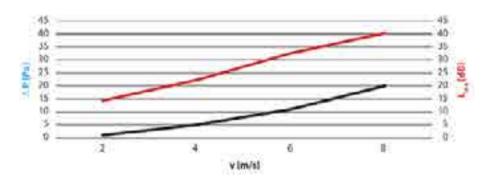
d [mm]	Sk [m²]	Se [m²]v	[m/s]	Q [m³/h]	weff [m/s]	dp [Pa]	L _{wa} [dB]
			2,0	69	2,63		19
125	0.04000	0005	4,0	1375	,2	10	27
125	0,01230	,0095	6,0	2067	,8	20	36
			8,0	2741	0,43	34	2


PARÁMETROS TÉCNICOS

mcr FID-PRO 160

d [mm]	Sk [m²]	Se [m²]v	[m/s]	Q [m³/h]w	eff[m/s]	dp [Pa]L	_{wa} [dB]
		0.0400	2,01	19	2,42		17
100	0.0004		4,02	39	4,86		23
160	0,0201	0,0166	6,03	58	7,31	53	4
			8,0	4779	,7	24	41

Caída de Presión en la compuerta


v (m/s)

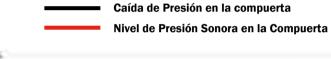
mcr FID-PRO 200

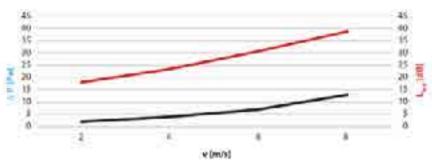
d [mm]	Sk [m²]	Se [m²]v	[m/s]	Q [m³/h]w	eff[m/s]	dp [Pa]L	_{wa} [dB]
		0,027	2,0	194	2,3	11	6
200	0.0244		4,0	389	4,7	52	1
200	0,0314		6,0	583	7,0	11	33
			8,0	778	9,3	20	40

Caída de Presión en la compuerta

Nivel de Presión Sonora en la Compuerta

mcr FID-PRO 250


d [mm]	Sk [m²]	Se [m²]v	[m/s]	Q [m³/h]w	eff[m/s]	dp [Pa]L	_{wa} [dB]	
				2,02	82	2,52		18
250	0.0404	0,0391	4,05	645	,0	42	1	
250	0,0491	0,0391	6,0	846	7,57		29	
			8,0	1127	10,0	10	33	



Caída de Presión en la compuerta Nivel de Presión Sonora en la Compuerta

mcr FID-PRO 315

d [mm]	Sk [m²]	Se [m²]v	[m/s]	Q [m³/h]w	eff[m/s]	dp [Pa]L	_{wa} [dB]
		0.0054	2,04	71	2,4	21	8
215	245		4,0	9424	,8	4	23
315	0,0779	0,0654	6,01	413	7,17		31
			8,0	1884	9,51	33	9

COMPUERTA CIRCULAR "mcr FID-0"

d - Diámeto Nominal [mm]

Sk - Sección de los condut**c**s [m²]

Q - Caudal [n³/h]

v - velocidad [m/s]

Se - Sección útil de la compurte [m²

dp - Caída de Presión [Pa

 $\mathbf{L}_{\mathbf{W/A}}$ - Nivel de Presión Sonora [dB]

d [mm]	v[m/s]	Sk [m²]	Se [m²]	Q [m³/h]	dp [Pa]L	_{wa} [dB]
	2,0			2811		15
050	4,0	0.0404	0.0200	560	42	4
250	6,0	0,0491	0,0392	890	82	8
	8,01			.130	11	33
	2,0			4781		18
245	4,0	0.07700	0.050	949	42	4
315	6,01	0,07790	,0653	.400	83	0
	8,01			.880	16	35
	2,0			6101		17
050	4,01	0.0000	00.47	.220	52	4
250	6,01	0,09890	,0847	.830	11	34
	8,02			.440	20	40
	2,0			6101		17
255	4,01	0.0000	00.47	.220	52	4
355	6,01	0,09890	,0847	.830	11	34
	8,02			.440	20	40
	2,0		0.4000	789	11	7
400	4,01	0.4050		.5785		25
400	6,02	0,1256	0,1096	.367	11	34
	8,03			.156	10	41
	2,0			1.0151		16
450	4,02	0.4500	0.4.44.0	.030	42	5
450	6,03	0,1590	0,1410	.045	10	35
	8,04			.060	18	41
	2,0			1.2691		18
F00	4,02	0.4000	0.4700	.538	42	4
500	6,03	0,1963	0,1763	.807	83	3
	8,05			.0761	54	0
	2,0			1.6111		16
E CO.	4,03	0.0400	0.000	.222	32	4
560	6,04	0,2462	0,2238	.834	7	33
	8,06			.445	13	39
	2,0			2.0621		20
620	4,04	0.244.0	0.2004	.124	22	2
630	6,06	0,3116	0,2864	.186	53	3
	8,08			.247	94	0

DAMPERS TEMPLADORES DE LAMAS

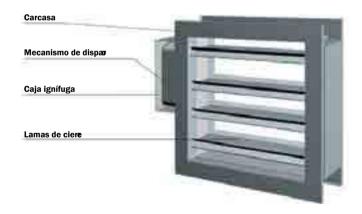
Compuertas Cortafuego

Las Compuertas Cortafuego MERCOR han sido especialmente diseñadas para compartimentar conductos que pasan por diferentes sectores de incendio tal como exigen las normativas vigentes en materia de protección contra incendios en edificios.

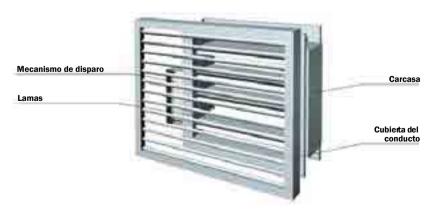
Aplicación

Las compuertas de lamas "mcr WIP" han sido diseñadas para ser integradas en sistemas de ventilación o zonas de paso de tabiques de forma tanto vertical como horizontal. También para edificaciones que requieran de bajos niveles de nivel sonoro, así como bajas perdidas de presión. Durante el fuego, las compuertas previenen la expansión del fuego, las llamas y el humo a través de los conductos de ventilación o directamente instaladas en los elementos constructivos de separación.

Según la versión podemos diferenciar los siguientes tipos:


mcr WIP/S: Para ser usadas en sistemas de ventilación de tipo conducto y separar diferentes zonas de fuego.
mcr WIP/T: Para transferir aire a través de elementos de separación tales como tabiques. (sin conductos).
mcr WIP/T-G: Fabricadas para uso en sistemas de ventilación que atraviesen zonas con sistemas contra incendio de extinción por gases, (generalmente usados en recintos donde se ubican equipos electrónicos, informáticos, centros de control y medida, etc..).
mcr WIP/V: Para transferir aire a través de paredes por conducto y sin él, y diferenciar su apertura o cierre en función de la ruta del humo.

Normativa


- Resistencia al fuego según uso y modelo: EIS60, E120 y ES120 (E=Integridad, I=Aislamiento térmico, S=Estanqueidad de los humos).c
- · Compuertas certificadas según modelo bajo la normativa EN 15650 (Ventilación de edificios, Compuertas Cortafuego), EN 13501-2 (Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 2: Clasificación a partir de datos obtenidos de los ensayos de resistencia al fuego excluidas las instalaciones de ventilación), EN 13501-3 (Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 3: Clasificación a partir de datos obtenidos en ensayos de resistencia al fuego de productos y elementos utilizados en las instalaciones de servicio de los edificios: Conductos y compuertas resistentes al fuego), EN 13501-4 (Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 4: Clasificación a partir de datos obtenidos en ensayos de resistencia al fuego de componentes de sistemas de control de humo), EN 1366-2 (Ensayos de resistencia al fuego de instalaciones de servicio. Parte 2: Compuertas cortafuegos), EN 1366-10 (Ensayos de resistencia al fuego de instalaciones de servicio. Parte 10: Compuertas de control de humo) y EN 12101-8 (Sistemas para el control de humo y de calor. Parte 8: Compuertas para el control de humo).

Certificados CE según modelos: WIP/S, WIP/T et WIP7T-G (1396-CPR-0097) y WIP/V (1396-CPR-0117)

DISEÑO COMPUERTA DE LAMAS "mcr WIP/S"

COMPUERTA CIRCULAR "mcr WIP/T" y "mrc WIP/TG"

MECANISMOS DE DISPARO Y OPCIONES

Además del mecanismo de actuación manual, las compuertas cortafuego se pueden suministrar accionadas por otros mecanismos de tipo eléctrico. En estos casos la compuerta puede actuar por un doble sistema: mediante fusible térmico o mediante accionamiento electro-mecánico.

Tipos de accionamiento disponibles según modelo de compuerta:

DISPOSITIVO	DESCRIPCIÓN	mrc WIP/S	mrc WIP/T	mrc WIP/TG
RST-KW1/S	FUSIBLE TÉRMICO BIMETAL 74°C X			
RST-KW1/S/WK2	FUSIBLE TÉRMICO BIMEAL 74°C + CONTACTOS FINAL DE CARRERA (NO/NC)	X		
RST-KW1/24	FUSIBLE TÉRMICO BIMETAL 74°C + CONTACTOS FINAL CARRERA (NO/NC) + SISTEMA CIERRE POR PULSO (24 VOLT C.C.)	X		
RST-KW1/24P	FUSIBLE TÉRMICO BIMETAL 74°C + CONTACTOS FINAL CARRERA (NO/NC) + SISTEMA CIERRE POR CORTE ELÉCTRICO DE 24 V. C.C.	X		
RST-KW1/230I	FUSIBLE TÉRMICO BIMETAL 74°C + CONTACTOS FINAL CARRERA (NO/NC) + SISTEMA CIERRE POR PULSO ELECTRICO (230 V. A.C.)	х		
RST-KW1/230P	FUSIBLE TÉRMICO BIMETAL 74°C + CONTACTOS FINAL CARRERA (NO/NC) + SISTEMA CIERRE POR CORTE ELÉCTRICO DE 230 V. A.C.	х		
BF24-T BFL24-T BFN24-T	DIPOSITIVO DE DISPARO TERMOELECTRICO CON ACTUADOR ELÉCTRICO ALIMENTADO A 24 Volt. C.C./ A.C., Y MUELLE DE RETORNO	хх		
BF230-T BFL230-T BFN230-T	DIPOSITIVO DE DISPARO TERMOELECTRICO CON ACTUADOR ELÉCTRICO ALIMENTADO A 230 Volt. A.C., y muelle de retorno	ХХ		
EXBF24-T	ACTUADOR PARA ZONAS EXPLOSIVAS COMPUESTO POR DIPOSITIVO DE DISPARO TERMOELECTRICO CON ACTUADOR ELÉCTRICO ALIMENTADO A 24 Voit. C.C./ A.C., Y MUELLE DE RETORNO	хх		
EXBF230-T	ACTUADOR PARA ZONAS EXPLOSIVAS COMPUESTO POR DIPOSITIVO DE DISPARO TERMOELECTRICO CON ACTUADOR ELÉCTRICO ALIMENTADO A 230 Volt. A.C., Y MUELLE DE RETORNO	ХХ		
BE24 BLE24	ACTUADOR ELECTRICO A 24 V. AC/DC SIN MUELLE DE RETORNO		x	
BE230 BLE230	ACTUADOR ELECTRICO A 230 V. AV/DC SIN MUELLE DE RETORNO		x	
BF 24 BFL 24 BFN 24	ACTUADOR ELÉCTRICO ALIMENTADO A 24 Volt. C.C./ A.C., CON MUELLE DE RETORNO (SIN DISPOSITIVO DE DISPARO TERMICO)			х
BF230 BFL 230 BFN 230	ACTUADOR ELÉCTRICO ALIMENTADO A 230 Volt. A.C., CON MUELLE DE RETORNO (SIN DISPOSITIVO DE DISPARO TERMICO)			х

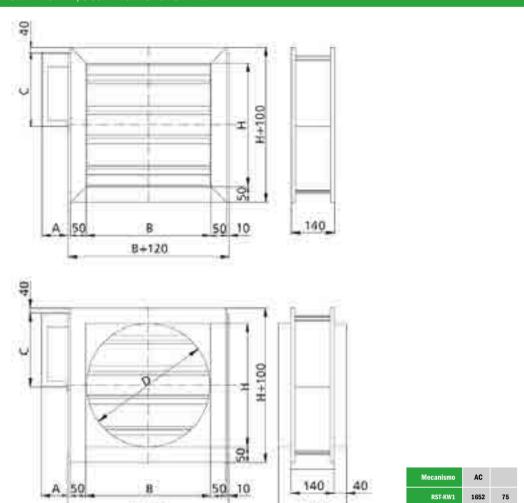
Compuertas fabricadas en :

REFERENCIA	DESCRIPCIÓN	mrc WIP/S	mrc WIP/T	mrc WIP/TG
SIN SÍMBOLO	COMPUERTA ESTÁNDAR EN ACERŒALVANIZADO	XX		x
KN	COMPUERTA FABRICADA EN ACERO IOXIDABLE	хх		x
КК	COMPUERTA FABRICADA EN ACERO IOXIDABLE ANTICORROSIVO	хх		х

Otras opciones: consultar con exipo comercial demercor tecresa®.

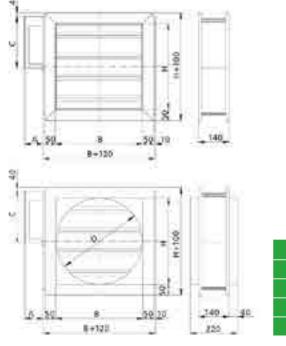
COMPUERTA DE LAMAS "mcr WIP/S"

Fabricadas con formato rectangular y dimensiones comprendidas entre:


- · Ancho nominal B: Desde 120 mm. a 1000 mm.
- · Altura nominal H: Desde 160 mm a 1000 mm.
- · Máxima superficie útil de hasta 1m2.

Aparte de las dimensiones standard se pueden fabricar a medida compuertas cortafuego con dimensiones intermedias dentro del rango anterior y con incrementos de 1 mm.

Las dimensiones externas varían en función del mecanismo utilizado: RST, RSTKW1, BLF, BFN, BFL...


COMPUERTA MCR-WIP/S CON MECANISMO RST- KW1:

COMPUERTA DE LAMAS "mcr WIP/S"

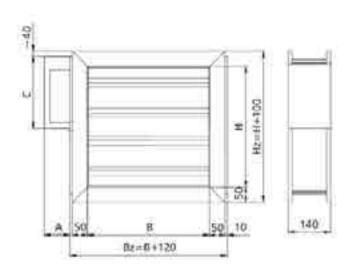
COMPUERTA MCR-WIP/S CON MECANISMOS BELIMO BFL, BFN, BF, BF-TL, EXBF

B+120

Mecanismo	AC	
BLF	1253	25
BFN	1252	75
BFL	1253	25
EXBF	1754	00

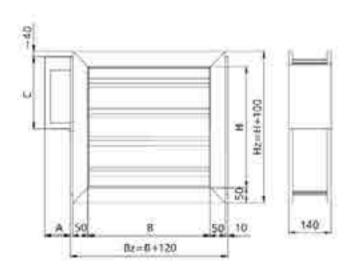
220

COMPUERTA DE LAMAS "mcr WIP/T" y "mcr WIP/T-G"


Fabricadas con formato rectangular y dimensiones comprendidas entre:

- Ancho nominal B: Desde 120 mm. a 1000 mm.
- Altura nominal H: Desde 160 mm a 1000 mm.
- Máxima superficie útil de hasta 1m².

Aparte de las dimensiones standard se pueden fabricar a medida compuertas cortafuego con dimensiones intermedias dentro del rango anterior y con incrementos de 1 mm.


Las dimensiones externas varían en función del mecanismo utilizado: RST, RSTKW1, BLF, BFN, BFL...:

COMPUERTA MCR-WIP/T CON MECANISMOS BELIMO BFL, BFN, BF, BF-TL AND EXBF:

Mecanismo	AC	
BFN	1253	25
BFL	1252	75
BF	1253	25
BF24TL-ST	1253	25
EXBF	1754	00
BLE	1252	75
ВЕ	1253	25

COMPUERTA MCR-WIP/T-G CON MECANISMOS BELIMO BFN, BFN, BF, BF-TL AND EXBF:

Mecanismo	AC	
BFN	1253	25
BFL	1252	75
BF	1253	25
BLE	1252	75
BE	1753	25

PESO ESTIMADO COMPUERTAS

COMPUERTA DE LAMAS "mcr WIP/S" para conductos rectangulares:

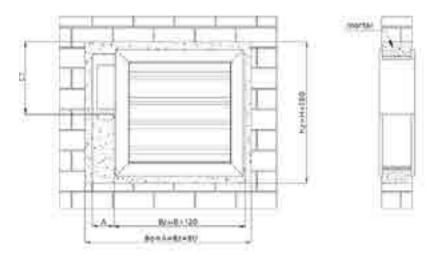
Peso en función de las dimensiones del conducto (Kg):

		Width B [mm]									
		200	2503	00	4005	00	6007	00	8009	00	1000
	200	101	01	01	01	51	71	81	92	22	5
	250	101	01	11	11	61	81	82	1	24	27
	300	101	11	11	21	72	02	1	23	26	28
	350	11	11	11	161	82	1	23	26	28	30
mm.	400	121	21	41	81	92	1	25	29	30	33
풀	500	151	61	71	92	02	32	73	23	33	5
Height H [mm]	600	171	82	02	1	23	26	30	35	37	39
	700	181	82	1	23	25	28	32	35	38	40
	800	20	21	22	24	29	35	37	41	43	49
	900	22	25	25	28	33	35	39	43	49	52
	1000	23	29	32	33	36	42	43	47	53	60

COMPUERTA DE LAMAS "mcr WIP/T" y "mcr WIP/T-G" para conductos rectangulares:

Peso en función de las dimensiones del conducto (Kg):

		Width B [mm]									
		2002	50	3004	00	5006	00	7008	00	9001	000
	200	101	01	01	01	51	71	81	92	22	5
	250	101	01	11	11	61	81	82	1	24	27
	300	101	11	11	21	72	02	1	23	26	28
	350	11	11	11	161	82	1	23	26	28	30
[WW]	400	121	21	41	81	92	1	25	29	30	33
풀	500	151	61	71	92	02	32	73	23	33	5
Height H [mm]	600	171	82	02	1	23	26	30	35	37	39
	700	181	82	1	23	25	28	32	35	38	40
	800	20	21	22	24	29	35	37	41	43	49
	900	22	25	25	28	33	35	39	43	49	52
	1000	23	29	32	33	36	42	43	47	53	60

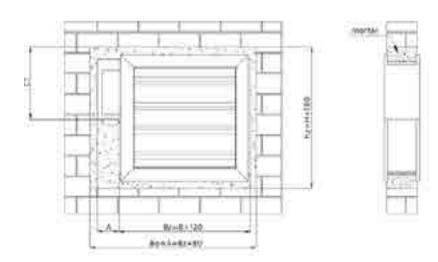

DIMENSIONES APERTURA PARA INSTALACIÓN

COMPUERTA DE LAMAS "mcr WIP/S"

Las dimensiones mínimas de hueco para instalación de la compuerta cortafuego mcr WIP/S son

Bo = (A+Bz+80) mm

Ho = (H+180) mm


MECANISMOB	FB	FL	BFNR	ST-KW1	EXBF
C1 [mm]	3853	35	3853	35	460
A [mm]	1251	25	1251	65	175

COMPUERTA DE LAMAS "mcr WIP/T" y "mcr WIP/T-G"

Las dimensiones mínimas de hueco para instalación de las compuertas cortafuego mcr WIP/T y mcr WIP/T-G son

Bo = (A+Bz+80) mm

Ho = (H+180) mm

MECANISMOB	FB	FL	BFN	EXBFB	LE	BEC
C1 [mm]	3853	35	3854	60	335	385
A [mm]	1251	25	1251	75	125	125

PARÁMETROS TÉCNICOS COMPUERTA DE LAMAS "mcr WIP/S"

B - Ancho nominal [mm]

v - velocidad [m/\$

Q - Caudal [m³/h]

H - Altura nominal [mn]

Sk – Sección de los condutos [m²]

dp - Caída de Presión [Pa]

Se – Sección útil de la compu**t**e [m²]

					100			1	Att	are H (mr 250	nl .				100		
	- 3	. V.S.	53	50	0	do.	500	Sk-	Se	0	ylar,	1,03	Ω.	Se	0	dp:	See
-	_	(cmi	(m)	- limit	[m/mg	[Pa]	1466	lm*1	{m/}	[m'/h]	IP45	Feet	[m ²]	[m ³]	[10]/6]	[P+]	169
ы	500	63	C. 27 Lo.	www.	254	- 4	26	2.322		874	11	370			1 100	-	- 27
1	200	-	near	11004	379	33	-81	HINE	most,	1734	- 31	86	In ne	TANKA.	1.200	-74	-0
-1	622	286		_	11228	31	201	_		11,000	100	166		_	12000	0390	34
П		- A			40	_+	24			76.5		- 77			COL	5	-3
ч	250	-	2000	11043	318	-0-		stim.	BREST	7.00	- 10	W.	lane.	li-mia		1100	
4	102	100	Y =		1.550	50	-A4 86			1 315	-12-	6	-		7.295	24-	-5
h	_	0		-	754		10		_	0.0	-	- /4			1 100	- 4	- 21
н	100	10	10000	0.005	(1,702	131	20	West	0.084	1,377	DC	38	0.0m	400	£ 852	CHADI	Dè
П	300	-1		-0.00	3.490	71	-80	Service A	-	CHRC	-31-	96	hae.	-	5.200	72	
4	-	100		_	13967	-35	34			2.700	-	-30	-		K-62-4		-3
1	1237	-	No.		107	-	:22			(FOT)	- 5	-5			1.785	7	146
н	050	-	0.070	611111	1.79	33.	12	0.656	8.00	3:142	-3)	79	9.485	16/10/5	2170	22	- 4
H		1001	- 1111		230	n	100			310		12			2,211	-	100
ı		1.			1979		295			1224	-6.	29			1.164	1	-2
Ш	400	0	O.Own	0.000	1.401	_((_	III,RII	0.90	00049	1630	1.0	_ E.	501	100	2.203	12	100
1	22.0	100	Luthin.	MISS.	1.558	-22	40	2.70	man.	3.446	-12	4.1		1000	7.504		-4
Н	_	110		-	1.000		73	_	_	3.600	- 90		_	_	3.672	147	-
т	WH	E.	77		1.002	ů	Dies			3,506	12.	90	-		E 575	DIĀDĪ	100
в	450	7	0.000	HITT.	2 290	22	46	1000	0.075	1.51	17	44	0.00	624	0.135	III	4
u		10			1.04	15	12			3.46	35	53			A-524	CHC	- 3
Т		-0.5			1,274	_1_	18			150	_>_	-75	1		1.536	3	_ 10
н	500	6.	£ 000	16085	1300	-3-	- 19	9745	11106	2.295	- 0	-66	975	103/81	£754		-
1	2000	100	975000	.7.713	000	32	100	111111	11100	1 623	22	- 50		12.37	10000	e de la	
ł		9.			1,598		79	_		1.633	-	77.			2.004	3	
Ш		- 65			2 6/20	12	49			1,562	t/E	40			3425	-36	134
	550	. R.	9,759	AL094	£.6000	23	41	55534	9117	3.506	- 37	66	97.50	(1,144)	4 500	. 33	- 4
ij.		330.5			3394-1	34	-33-		_	- ASHBU	34	56			5565	236	15.5
Ш		-0.0			444	-3	29			1.55	3	30	Tr.		1,500	in land	-3
П	600	-	6120	(8) (60)	2 900	22 22	10	J4150.	III:1246	3472	77	45 M	9.16	0445	4.400	40	-4
П					3872	34	100			200	14	100			1000	tolikus	
ı		41.		_	1.555	- 1	-39			1.1569	- 51	33.			2.587	- 5	- 1
н	650	6.1	30100	00111	4.387	72	45	4044	0.000	7.704	12	41	0.05	0.160	5 5,000	53825	4
п	639	- E	107700	7777.11	8.184	11.	da	711747	0.00	2.916		874	0.06	0.40	9734	1.311	- 4
н		1.00		-	17976	24	.5.1	-	-	2404	- 65	53	-		2385	38.	- 7
Ш		1			250	-0	42	0		3187	- U	85.	II		3350C	192	-4
4	700	-	(0,040)	ALTE:	3417	177	41	0.000	0.644	4294	12	47	0.31	()0.00K	5.14	-	-4
н		OW.			4.254	34	54			3.355	14	55			5.426	35	-5
Т		4			7,834	1	134	1		4.2%	- ž.	27	111		2:254		
н	250	6	20156	9/120	(3.254)	72.	11.85	00000	6:359	3.465	· 170;	57.	DR	0.140	4395	7.	53
ш		1000			3173	77	- 65			3.79	4	87	1		5.4m	2	-4
н	-	- 6	-	-	7.956	-	- 0	-	_	2.440	-	-3-	-	_	2.50	-	-
н	0.650	855	2000		12004	.12	-01	Sec.		9.4072	127	A2:	0.00		4.100	1790	15.8
Н	900	100	61,000	20.710	1917	10	- 44	1.700	6.101	4490	- 31.	40	0.24	0.704	5 933	100	- 9
1		10		_	4.690	3.3	54			4 120	79.	25			2000	145	23
		4			7181	3				3.600	- 1	11.	Úl		1111	1	
	650		0.120	11145	1120	-8	32	620	13.1901	3 900	-3	-80	0.195	Hilt:	1152	-	13
H	500	1386			4 163	-10	- 55	-		3.797	- 11	- 61			7.803	70	-4
t		4			0.000	-7-	100			F/54	-	31.			Y 100	115	
	200	92	and the same	Wipsi	2.00	- YE	1	1222	make.	+111		41	0.00	No.	1000		24
	200	. 0	6.000	B PS.S.	4.6%	Ď.	-06	0.326	E-161	3-508	41	49	9.31	H.De	0.000	26	- 31
Į.		150%	_	_	1 1008	11	54	_		8.833	14	35	-		8362	731	- 5
1					2.658	-3-	111			00011	->-	M.			11177	-	10
1	1000	-63	6300	8.09	H AZE	-9-	D)E	0.250	0.411	3,580	9	42	9-6.1	16.245	2200	30003	3
	at the	1100	V		X 094	- C	24			# 17/A	- Sir	75			W188	-4	3
	_	177			100,170,00			_		2,4500	- 12.	- 77			10.000		

B - Ancho nominal [mm]

v - velocidad [m/\$

Q - Caudal [m³/h]

H - Altura nominal [mm]

Sk – Sección de los condut**c**s [m²]

dp - Caída de Presión [P≱

Se – Sección útil de la compu**te** [m²]

					350	- 4		-	- 4	Swa H In	uml			A3 .	#56 ·		
	ſ	×.	, 5k	, let	o (m/h)	do	idit	.34	Ç\$e,	0	dp	1981	,14	,24	(hr/h)	de	L
-	-	[m/s]	(m)	(m²).	Andrew Control of the Control	Pal		lm/i	·[m ¹]	incini-	Pal		[m]	[m²]		(Pa)	
00	8	(40)	W M		637	(0)	1040	3.657		008861	32	31	1000		1.102	ισάσι	14
20	15.	1	0.000	0-0	CL THE	22	6	0.086	0.000	1.998	14:	7	0.00	perio	4 301	22	-10
		1,1,1			(F.1A)	30	-51			2.346	34	1,1			1754	94	17.62
N=	Щ	. 4			1.071	- 3	15			1724	- 3.	- 17			1.111	-5	-27
25	0	4	9.000	19.078	1.001	- 11	19	0.100	0.085	200	11.	34	0.00	0.00%	3.566	1381	- 3
753	m	1569	1,000		1 434	77	1985	1775		T AA8	54	-11			7.75A 7.642	160	=50
-	-	4		_	1.213	- 1	-29			1.009	-7-	27		_	1.652	1	10
30	24	Acc			1.50%	111	40			# 4107	W.	.49			2.67	W.	90
194		.0	0.109	0.000	2.5/6	11	47	6300	6 000	2,079		4.7	0.005	0339	3.105	22	- 41
: 	-	387			3712	30	-35	_		3 (22)		- 55	_	_	131	31	-34
	ш	4			1.432	-2	- 25			1 574 1 574	3	22 40			7.802	i à	-4
35	0.		30,155	(0.194)	199	33	3	11.140	9359	3 437	-77	40	0.258	9.114	1.854	- 24	4
	Ш	102			9.345	31	7.58			3.284	3,3	33			4 900	34	-54
-	П	4.	_		(1774.)	- 2	329			1.556	X	39			7.700	1.5	
40	10	16.	303160	30.119	2000年	- 0=	48	0.000	0.188	23/4	- 12	All	0.700	0.01	3305	100	- 4
100	îi.	#. 100	16/2/16 1	2011	9.284	34	46	4076	7.77	3 117	33	41		100000	3.506	21	11
-	-	9		_	1 970	- 1	77	_	_	2.203	-	31		_	2.479	-	17
	Шħ	193			2.802	74	Diffe:	i		E PUS	12	41			2714	142	32
45	10	8.	(0.258)	30,734	1.855	124	48	0.180	0.122	4.105	25	.49	0.101	6372.	4197	41	- 44
	Ш	400			4.825	:34	34			1.505	33	54			6 P97	33	- 55
	ш	4			7.142	-5-		10.00		2.448	-5-	11	1		2754		32
50	10	15	30375	20000	18213	73	48	0,000	0:110	# 873 # 836	12	42	0.125	0.191	2 133	-47	-44
	m	não.			5350	100	190			6.120	33	- 53			1 505	ENG.	100
-	-	*		-	4370	4	F1.			2 664	1	- 31		_	1 022	- 4	N
55		18.5	X180	6160	1.850	153	42.5	a 336	0.142	4.039	t/	-31	9348	0.210	4544	1,12	-40
55	٧.	P	A. 190	0.94	3.121	.22	4%	0.300	0,140	5 130	21.	#4	220	14,210	6,000	-21	. 50
	-	10	_	_	182	- 53	1.35	_		6.732	-it	90		_	7.575	111	19
60	Ш	A.			2570	30	10/20			1 400	-	37			3 10% 4 657	-	=0
6-0	10	6.0	35:210	6.179	5141	21	120	9200	0.704	9.575	11.	44	81100	0.250	6.610	-371	50
	ш	THE S			6.426	'3-3	180			2364	72"	- 66			6000	532	teriji.
	П	14.			(2.9%)	- 4	12			3.002	- 5	32			3.500	3	33
65	0	185	E 229	(F) (15)	4.171	77	.8	0.360	2.275	4.774	17	.33	11200	0.210	3.395	100	4)
100	84	m.			250	111	V ACT			11950	71	100	-	550	3.354	71	-X
+	-	4.		_	2 999		12			4147	-	11		_	1.866	-	3.3
2.2	u.	9.	0.730	4.000	3.708	.53	100	Wind:	WILLS	E 241	12	33	4132	Lane	11 104.6	1120	100
70	10.1	4	11.145	11 5 600	3.008	-21	1	Him	0.136	4.114	27	10	9.568	4,340	2.711	- 21	3.3
		285			7.497	33	56.			# 558	17.	5.5			9,539	51	55
	Ш	4			1405-	->-				1000		37			-111	_	-13
25	u	(6.)	0.703	4114	# KD0	11	742	0.0	0.255	5300	33.	41	0.0E	9.287	II 197	MI	1049
		tivit	200		W 998	30	100	550		9.700	32	16	-		10.328	31	lo ili
	**	- 4			1427	- 1	- 0			1307	-	33			4 41%	-	1.2
80		100	- 1000	41.114	P.141	32	49.5	WW	0.272	3.875	117	.43	9.00	0.116	€ 610	CHE	-4
90	XI.	3.	2.160	10.514	# 80 H	-11	76	9.32		7 4 14	20-	34	1,000	10.00	ERT	- 20	29
-	-	30			8.568	(1)	1.00			9.792	11	36	-	_	11 010	C800	196
U.U.		100	CVID	G ref	2.01	100	12	244	.711	# 20	=0:	31		LOVE	E-033	THE	G
85	.0.	100	11750	4,359	731	22	AS.	P.M.	0.744	8.113	10	50	0.584	4115	7.364	120	00
		310			0.908	31	136			111,00.4	20	9			11,205	200	166
		4			1.834	. > _	. 12			A.404	ñ	44	-		4 957	-1	
90	10	18/	0 m	9216	(5.768.)	31	48.	6.800	0.00	+ 000	12		pec.	0.144	7.630	13831	(4)
1000	2	10	mess,	1.15	2.711	20	24		1117	S.R13.	×	14	1	T. C.	7374	18	24
-	-	4		_	1,/41	311	-15	_	_	4.3146	00	18		_	1 500	86	- 10
150	3	irida.	550	191	06.68	.11	toláci	2500	75	2384		-33	1000	- 500	8.2%	CHIC	- 6
300	00	1	0.340	0.286	1561	.77	36	0.800	U Just	9.792	17	3.5	0.450	0.383	11.016	19	: //3
		50			10.710	31	56			11 740	30	51			11.77%	30	33

B - Ancho nominal [mm]

v - velocidad [m/\$

Q - Caudal [m³/h]

H – Altura nominal [mm]

Sk - Sección de los condu**c**s [m²]

dp - Caída de Presión [Pa]

Se – Sección útil de la compu**ter** [m²]

				800				A	tura H Im	md				1000		
	V	Sk	5e	9	dp .	No.	58	Se	950	αp	l bee	58	5e	900	dp	100
	levid.	Tim ³)	I'mir	im'hā	SPal	tall)	liv'i	im')	100.700	Tref	im	(m)1	len'l	im 2hi	IPel	138
	100		Total I	1724	-3-	- 6		1112424	799	-2-	49			2.407	-	-0
200	18/2	0.000	0.085	1		19	6395	(1004)	3,936	-94	30	0.08	0.103	3.20E	#	-0
1000	00			3.06	-184 -1	- 54			a srec	44	52	000		16//	17	58
	- 6			+ >10		.29			3.666	- 5	13			1 839	- 5	- 29
250	100	Atri	m.146	(1226)	:0	99.	8144	m 127	2,545	32	40	6756	0.138	2754	145	- 44
E-17.		0.00	Later	1.00%	141	- Aller	200	0	1300	21.	33	1,000	13,710	1677	-35	87
=	100	_	_	100	- 13	10	-	-	1 020	31	31	-	-	4500	17.	50
PERMIT	100	CHIC	1000	E33941	-10	= 807	0000		# 024	=0	an	THE Y		9 305	100	-61
100	1	4119	9.178	1671	21	41	0.150	9:170	# 038	11	41	6,586	0.455	A 404	31	- 41
	30			1.00	1.1	- 54			8.0-06	33	10			1508	33	-64
13077		-		1110	- 1	- 30		200	2.59	-2-	- 11	-	-	2.570	3.	
350	1980	6.115	100.00	5680	-0	90.0	0.000	20144	3336	-01	30	99m	booth	3.856	11.	41
17225	38	10000		#.384: #392:	21	154	SAME		5.831	11:	-61	1,000		5181	28	65
			_	2.448	7	- 11			2.001	-7-	1		_	1011	-	- 11
460	1040		0.150	1104703	2.4	== 4h((0.000	17141	4.039	-11	10	9.346	41764	+406		-62
3011	7.	- 100	7/7	4.07%	21	39	0.311	The l	5.000	21	-01		9,304	5,975	-26	
_	107	_	_	100	- 11	-51	_	_	+732	37	355	_	_	7321	180	55
	- 5			1754	-2-	- 11			8 02/9	-3-	47			1 305	-2	-11
450	1.4	9775	0.7(7)	1504	11	4	5440	11/219	9.009	11.	34	9.279	9475	# 855 # 910	20	47
	100			Desent	- 10	M			77434	- 10	55			8260		55
	1			1.000	-3				3306	- 7	70			J-6/V	5.	33
500	1	0.256	9.7%	4.550		(4)	36.225	9284	33986	.12	43	0.200	0.055	5.509	_11	8.5
HAR.		71,000	000,000	8.120	- 22	- 31	10000	10,000	6732	25	50	5000	10000	7.344	- 20	- 50
_	38	_	_	3.65%	37	M	_	_	E415	-04	39	_	_	9,120	CICI	- 9
	100			1677	ile.	813			# 090 a	34.	(4)			# 610	11	11
550	1	0.534	0.236	7.344	71	70	0.303	4035	2000	23	50	0.05%	DOME	0.013	70	50
	lui.			116 (1997)		56			10.094	81	19			11.0%	No.	36
	- A -			3.672	- 5				4.009	- 1	30			A 4015	_6.	_32
600	1.5	3 50E	0.255	3.55%	-31	45	0.000	0.281	4.058	- 11	43	0.560	0.304	8.610	- 11	2.5
	100	2.041		102501	-02-	- 20		9.99	8 079	26	36	10,000	3.271	8.817	19	- 73
=	4		_	9.150	THE P	- 54	_		4.775	-		_	-	4.774	30	- 54
	6			188	15	-44			0.564	-ñ-	4			2360	-0	
630	- A	-9.303	9,336	1364	91	- 13	0,334	9088	m 75c	-16	- 5	0.399	00330	9.547	34	- 56
	-ta			3335	-31	- 44			70 940	33	5.5			11,964	1997	- 57
	4.			2.194	- 1				470	-5-				5.341	7	_2)
700	3.9%	0.150	0.250	8-618.0		-45	6,355	8.00	7.98	-11	2.5	0.420	\$1,250	7.71	-15	-04
	-10			1200	-9	-30			15705	- 65	ô			10 250	- 4	- 63
=	1		_	1.530	_	31	-	-	1246	-1	33	_	_	- 5500	-	-11
200	A	0.00	Section 2	4-845	311	48	9569	141345	7354	10	44	2000	where	8 297	16:	44
750	- A	0.371	0.211	9.189	26	81	10,012	11.351	10.598	20	P	0.450	2.361	11.016	19	61
-	107		_	1111475	21	100			12 62 8 1	31	12	_	_	137770	10	6.7
	ni En			1386	70	- A			5.386	11	53			3.875	10	33
800	1	0.400	9.340	738E	-	43	6.440	11/279	10.771	19	1	00000	0.400	11.750	19	A4
CO.	101			13.348	2000	li della			15.484	10	4.5			147,000		- Ki
				1.203	1	1.84			8.722	T.	-31			6.242	4.	3.3
850	1.6	liciti	0.000	1.808	210	48	640	N AND	4543	10	-64	6300	Alain	3 (44	10.	1/
0.70	-de	-		19.004	10	_10_		-	11.444	10	- 1			17.45	18	- 11
-	100	_	_	13,005	0	76	_	-	Ta the	-75	32	_	_	15,000	-21	-V
545.0	4	control of		E362	-	9	lange on		# 008	10	11	20 m to		8 616 - 8 614	10	_11
900	4	0.454	N.SUL	11.046		80	11.495	8421	77.118	111	1	0.540	0.455	13 219	18	-
DOTE.	001			Trained	Esic:	Mari			10000	26	(4)			WSM		54
				9,000		1.5			9.009	-3	11			7.141	-	3.9
1000	W.	200	a.Us.	R 190-	10	41	0.000	0.488	¥ 11105	30	61	0.800	U. U.L.	11.000	102	66
1000			100	17,790	- 19	50	- 444	-	11.118	10	- 0	2000	440	14 688	10.	- 9
	1.00.1			75 850	29	- 4			16(142)	75	164			18 990	26	

B – Ancho nominal [mm]

v - velocidad [m/\$

Q - Caudal [m³/h]

H - Altura nominal [mm]

Sk - Sección de los condu**o**s [m²]

dp - Caída de Presión [Pa]

Se - Sección útil de la computer [m²]

									A	Dura H [m	m)						
	dia				850			Sec. 1		700			áa.		250		
		[red]	Sw [m/]	25	lm/h/	(Pa)	1000	In I	50	In Sty	(Pa)	100	125	120	(117/6)	(Pa)	100
Т		A			2369	1	130			1.016	-1	24			2754	-	_14
-1	200	100	0.122	0.111	3.937	27	47	putes	0.719	3.607	70	29	11.150	0.738	1.672	1	-
-1		mari			9.978	ii=	745			1/23/2012	=4=	- 52			190	CHILD.	
- 1		4			1.1 06/10 5	1	.79			2742	3.1	70			1775	-	30
-1	250	14.	3000	6199	4,994	14	.90	0379	0.000	140	11.	49	8.199	2110	3444	-11	-90
1	200	A.		~ 110	1.978	11_	AA	0.2.7	0.110	A 204	20	1.0		4110	A 500	26	- 4
В		11	_	_	+ 177	.17	W	_	-	3.955	- 10	X3	-	_	3.731	31	1.50
1	2020	tiás)			1 760	-100	114	1.1000	(4,000)	3,656	=0:-	44			4400	and.	15
1	300	100	5.00	25 (164)	5.228	25	- 12	0.1100	0.179	2141	29	- 11	8.152	0.781	5.500	40	- 10
1	200	10			EAST.	30	54			9.546	- PK.	54			C385	21.	1.00
T		4			1.0351	22	11.14			入225	-	- 1			3.151	- 2	
1	350	TIAN I	0.338	West	430	11	141	2385	2.703	2.00	11:	41	0.148	0.211	4,500		3
4	1330	16			3 569 CW96E	70	11961	0.00		3.998 Y400	10	10	1,000		6 A3A 9 833		100
Ħ	_	4			11111	-	. 11			+417		11		_	1177	-	
1	400		2244	- 11	4734	11	PQ	1000	- 144	0.141	TE	47	4.000	6341	5500	DENO.	EA
1	400	4	5,460	10.22	6-365-	20	-15	5288	2.514	6.854	5.0	479	9.105	0.118	2344	18	. 9
1		10		_	T296	TI	36	_		# 533	00	32			9 100	- 10:	10
Ŧ	415.11	4.1			26000	00	A/-	-77		1316	00	33	Arm		0.000	cic	-4
и	450	1	0.700	= 24W	3 140	20	90	5.115	2.04	5399CL	10	62	11,338	0.207	0.242	10	CH
1	1471	160			E301	21	Hillian			W43977	811.	38			10:338	- 80	109
1		A			5.497E.S	- %	D.			E.A.2008. L		:0:	7		4500	301	
П	500		6.379	220	(000)		All	0.700	6200	6.425	10	41	8.871	0.5m	FH01	12801	2.3
н	244	A	1237.47		1.006	39	30	7.100	2211	3.568	111	50	COSC	DESTITE	8.366	-18	- 4
ł		16.			8.545 I	11	156	_	_	20.740	-	36	_	_	3-017	86.	1 5
3	(EEE)	ii isti			LO MAIN	Ú.	ndå:	-	ne	# 774 2 Mate	11	41			233A	260	4
	550	121	0.000	20A	0.547	30	M	9.750	8.127	3.475	10	51	0.411	930	10 000	19	13
٩l		10:			11394	37	17			11.75	50	56			12 613	10	13
	200	4			ATIN	- 4	- 11			3.14	-3-	- 11			1344	- 5	
Н	GOD	19:1	0.00	= 137	33,500		100	0.470	0.757	(87)	-11	**	0.450	0.301	830	200	Ι÷ξ
1	11121	W.			P.3.57.	39	71.	14.22.5		10 225	-11	34			18 720	- 20	m.
ı		T			5.27111	3	. 23.			5.500	-	33		_	5 567	-	.).
П		DESI	W-7+2		けままけ	100	11 24 1			-8-35A	341-	41			6.953	12.	100
н	650	8.1	6300	30,354	-0.541	39	.34	0.055	0.381	33,33%	- 19	38	0.000	0,610	11914	19	= y
ŀ		10			73 529	30	97	_	_	0.625	28	57		_	Mark.	29	- 9
1		4			5 114	-	33			1.998	- 1	33			1-Q1	- 1	- 2
1	700	11921	0.419	8 383	11.748	100	31	0.490	110.0	E 90%	19	344 51	0.555	0.449	17.852		-1
П		100			33.823	45	11500			32,554	236	N.			14,000	29857	tulig
ı		4			3.967	. 3	14.			0.436	5.	3.0			2.683	1.5	- 1
1	750		6300	0.014	3200	31	34	6/65/8	0.446	9.032	10.	24	0.501	6.410	10.379	180	-56
1		4	.,	. 0.314	21.656	19		4.00.4		12 857	10	-34			13.710	19	10.2
Ð	-	7	_	_	3.765	53	12	-	_	A 53.1	7	24	-	_	7344	- 67	100
н		110000	*****		9.547	10	144		W-20	10.382	7	37			31.00e	138 0	-4
н	800	14	3330	9,22,0	77 780	116	-11	9.000	0.006	11301	11.	43	3.400	0.200	34.688	18	- 4
1		10.			15 112 3	-25	700			77.776	25	94			13 300	- 28	-3
		3			1.557	4				7.243	X.	31			2,803	4	18
	850	1191	0.553	0.470	10 114	100	24	5.595	0.306	10 924	10	44	0.614	6.541	15:705	190	Ħ
		mûs!			10.125	28	11			14 566 TR 201	10	52			15 606	de:	06
1		77			7.560	4	11			V 711		33		_	2.762	-	-
	900	33 W S I	5-505	1.00	10.141	10	H9460	ic Soint	0.5%	11 561	10.	100	1000	0.578	13-300	10.	134
	STATE .		0.000	- 440	18-621	78	34	POIN	D S No.	19.497	17	3/1	D 474.	0.574	16.501	11	.1.5
1		19		_	11 (0)	100	107	_	_	18 228	11	37		_	201655	121	118
	716167	ii Šiu			155	100	·M			ASS.		34			1,300	-	-3
1	1000	-	0.666	■ 55.5	13.10	18	11	9.700	6.555	17.110	17.	52	0.750	9.608	31.270	7	4
-81	18 71 74 74	100			G12.7354	129	191			91 946	4.61	745	10000		1.75 (1966)	1111111	i76

B - Ancho nominal [mm]

v - velocidad [m/\$

Q - Caudal [m³/h]

H – Altura nominal [mm]

Sk – Sección de los condu**o**s [m²]

dp – Caída de Presión [Pa]

Se – Sección útil de la compu**te** [m²]

				#\$0 U			0	A	700	m()		2		250		
	V.	.54	25	lm hi	dp [Pa]	200	100	35	Im Pay	(Pa)	500	131	125	(117/6)	(Pa)	5%
	[m/s]	Im ² I	fred)	140 (Mg)	[PA]	30	[ne'l]	5m*1	A TAB	[Pa]	(46)	[m]	[m ¹]	1.656	[Pa]	100
	h û	and and	14553	2234975	0	1196	Source	ward!	33W	W.	39	100,000	and the same	275	100	-40
200	H	00188	.0.171	3.582	-21	147	0.100	0.319	1407	207	43	8.150	0.738	1.673	10	- 41
	16	_	_	-Y-978	-37	160			4300	- 51	52		_	-2.900	91.	12.64
	4			1.068					174	-3.	44			475	_	
250	ΗF	30.00	6.199	1,928	17	40	0.29	0.1166	110	30	49	0.186	2710	3/44E	9	-8
100	mi:			8.921	100	100			38990		Ky.			3.00	- in	130
	4			2.397	0.0	-30-			1.510-1	-1	300		_	8.754	- 1	- 6
100	11/62/	5.00	25 666	1.580	-70-	1141	0.100	0.179	30608	-111	-41-	8323	0.781	14300	CONTE	53
300	1.0		Ti man	5.228	- 29	13	0.400	44.0	2.141	50	74	0112	4.76	5.500	30	- 39
-	100	_	-	DANK	- 25	(54)		_	9.939	- 25.	34		_	1,385	21	1.8
27.0	tijas	127171.0		100	m	14	1000		2391 2391	111	- 4	100		4 800	mira.	-4
350	1177	0.334	0.183	5 369	70	49	2362	2,707	1.990	10	63	0.744	0.277	6 A26		100
1	16			LWWEI]	181	11361	2.5		Y407	907	59			W (93)	DIE	- 3
				1.110	- 1	:11			+4.17		31			3177	-	- 7
400		5,440	= 22	4734	31	9	5288	2.214	0.141	TT	R	0.005	0.116	5500		1.6
0.003	100		Oct.	# 305- T 55#	20	10		550	8 603	10	35	1,118	Jeen,	9 360	11	100
	100	-	_	1.560	1	137	-	_	1316	70.	33		-	6.111	- 100	1
500	niani	300		12600001	D)(140	2007	2-2-3	[5300C]	000	40	COLL	1	1000	CHO	Icá
450		0.233	2.14N	3.340	20	90	2.10	2.044	1 333	1.0	92	17.738	0.287	0.243	(0)	1.0
	10:			8.75	21	116			0.639	817.	38			10,338	10	106
100	A.			5 A 99E 2	- X	D			A 200	-5-	:0			4500	- 82	
500	LINE.	6.379	5.27%	3.9(5)	10)		9.300	6.277	688	-11	41	0.371	0 FM	F80	DECT.	103
1000	160	1770-0		9.545	30	No.	5.700	2211	20.760	111	56	CDDS	LEADY.	8.365 B.265	18	Ιòλ
	100.	_		±77s	-	12	_		= 774	7	93		_	3-017	30.	
3 (220)	1180	7-	100	extent	10	HÁD.		THE	7.595	111	41		0.00	230A	260	Ħ
550	1.5	0.000	20A	0.547	30	3.1	9.350	8.327	3475	19	51	0.411	930	10 000	. 19	13
	30:			11.334	30	17			11.78	501	56			12.613	10	13
con	4			ATIN		-11			3.141	-3-	31			1344	-2	
600	1190	0.00	=337	[35,960.]		100	0.470	0.757	(87)	-11	***	0.450	0.101	830	-20	ΙĦ
1000	History Marie			9335 I	30	TI.	10,000		10.235	-11	34	111111111111111111111111111111111111111		18 720	79.	1
	17			5.771	3	. 71			5.500	-	33		_	5 567	-	
	11951			月接出	17		Ç.,		4 15A	14	41			8.951	2.12	<u>jeá</u>
650	8.	6300	30,354	-0.541	79	34	0.055	8381	71.338	19	-90	0.000	0,614	11914	19	= 3
	10			73.829	30	37	_		13 (42)	24	57		_	34 916	28/	- 9
	1.5			1.114	4	35			1.998	8.	33			1-91	- 1	- 3
700	110	0.419	E 287	11.148	10	34	0.490	110.0.	11.005	19	355 51	0.565	DOM:	17.852		19
	High			77.823	45	115400			36 554	23	NY.			16.001	2983	LU Á
	4			3.967	- 3	14.			eale.	5.	3.1			8.885	- 5	
750	1.83	6,400	0.614	3 201	91	347	6553	0.446	9.632	tu.	24	0.501	6.410	19 328	Like:	3
7.50	4	3490	0.914	21.654	19	-9	WORK-R.	2.444	12 852	19	37	0.064	4410	13.710	19	3
-	16.0	_	_	132,918	53	32	_	_	36.085	19	312	_	_	33715	-57.	11.5
	Hŵ:			A.105	10	137			10.382	-	37			73A4 31.006	0.00	-
800	17	10,120	0.223	77 fan	119	-NI	9.000	0.006	11305	11.	21	3.460	0.230	34 688	18	100
	100			15 \$14.5	-25	100			17.796	28	94			12 300	19	
	4			6.763	118	J.F.			7.243	3.	34			2303	4	
850	1	0.553	0.470	10 116	100	24	5.595	0.306	10.051	107	4.6	0.614	6,541	15,705	190	133
1.50	100	-772	The state of	13.125	- 11	41		-	14 566	111	- 52			75,686	4	
	1000		-	19907	-28			_	Rices	m.	505.	-	_	3950	311	123
	E4			10 381	10	nollin			11 56F	10.	-22			12-300	10	12
900	177	5585	3.450	14 (41	14	11980	D.9.111.	0.5%	13.437	17.	31.	5 67T	D 574	16.545	11	117
	190			11 000	100	100			1112200	27	57			201655	500	ΝŞ
	4.			11886	1.6	116			A.568	-1	34			5 380	-	- 3
1000	1 6	0.000	E 153	11.534	:00	43	0.700	6.555	12 814	111	0.1	0.750	9.601	31.270	10.	3
1000	1.0	0.000	= 117	3339.	14	-51	2.744	0.030	17.110	17.	瑟	4,738	9.598	34.563	-11	1.3
	100.5			1368903	.79	146			11 440	-17.	- 69			33.950-	- 11	339

COMPUERTA DE LAMAS "mcr WIP/T" y "mcr WIP/T-G"

B - Ancho nominal [mm]

v - velocidad [m/s]

 ${f Q}$ - Caudal [m³/h]

H - Altura nominal [mm]

Sk – Sección de los condu**o**s [m²]

dp - Caída de Presión [Pa]

Se - Sección útil de la computer [m²]

				200.0				Al	lara H. Im	m)				TIGAZIT		
	1		-	260	-				258	-	-			100	196	11
_	ie/al	[m ²]	im'i	imini	(Pa)	1400	lim'i	im ² j	IMPAI	(Pal	1,780	Intel	Se Dell	Im Pal	(Pa)	500
1	icer			798	Cappo	76			403	1000	1000			31794	- in	27
200	1	0.000	HODGE	979	- 24	44	0.050	0.008	1.224	23	44	:0:00	0.055	1 (54)	33	-85
	10			FEER	37	41.			1.338	1596	10.96			50E	35	E 63
	14			613	- 61	- 70			789	.0	3.5			318.	- 6:	18
250	13811	0.016	6542	MAR	2.00	197	6.003	0.05)	1.146	15	3.6	0.075	0.004	3.517	33	1.53
2.50	- 1			7.324	th	- 44			1.530	22	-45			1816	22	55
	70	_	_	1339	1.86	1,5	_		1981	156	1983	_	_	72.796	.75	55
	božu:			714 F102	-	37.			1.277	or design	1581			202	10	99
300	12	0.060	0.05	1 499	7	- 40	10,005	2:00e	1.056	8:	177	0.00	1000373	735	27	44
	120			£836	الأهكا	CMU			1399	1090	Hallery.			12841	35	34
	1.6			367	- 6	31			1-021	36	12-			1.246	1.3	- 50
350	.6	0.000	11000	1,588	0.7	34.	(Look)	0.094	1.007	1987	1060	0.005	E 2003	1.006	W	33
330		11.0070		1.710	-77	-47		- 11104	110	77	16			3.940	27	7.1
	100	_	_	2142	187	1377	_		3.479	1.55	12-1		_	TENER	-11	-10
	ni dan	U		973		18			124	- 0				1481	-0-	.25
400	100	4:05	A reim	1.400	100	95	4-1	6.00%	1.440	77	196	6.12	U. eliZ	[728][] [440]	22	#0
2000	179	100		1000	idbi	34	200		1 000	10000	154810			14200	39	- 99
	1			1100	- 6	- 21			1 477	-	20			1997	1	10
1982	DATE	100	lane.	1000	CHÓCH	PV	1,000	TALL	9.00h	100	militage	West	um	(3/2201)	32	39
450	1	-tr Triles	part.	2.201	22	- 24	STEP.	5.000	2.754	22	47	0.00	0.115	181	22	. 18
	-10			3.758	33	5550			1.641	10	3545			FOUR	- 18	5.5
	4		III	1.724	3	- 28			Y.A80:	2	1.00			1306	-3-	39
500	100	6.556	4485	1.439	100	- 29	0.125	0.165	3.00	738	-400	6.15	8.179	35.00AE	-32	90
100		-	true tone	3 4118	-23	.04	2.77		8:040	23	(15	200	200	1412-	.31	_33
_	10	_		1,000:	311	1,2	_		F128	GET	CHO			E#590:1	33	5.1
13.95	ickii	1		2 929	mési	27	1,446		1431	PHIL	(AC)	0.0000		3.000)J	-41
550	1000	3,136		2.430	22	47	5118	WHE	1.866	77	44	0.188	9.140	4 618	22	- 60
	Tip()			3.166	DOMOD	-53-			4.208	DIMOU	254			5.640	13.8	1264
				1.100	7.9	29			1.836		80			(2.20)	- 3	:11
600	26	0.776	Aves	2.201		60.	5116	majer	1254	130	130	615	mints	J. 773	3ii	31
1000	. 2	0.7011	1000	2.93%	22	47			4372	- 22	FB.		0.000	4.00%	-31	
_	310	_	_	1172	JA.	- 51	_		1,130	387	1341		_	3.40	33	34
4000	100			5.545		30			1 189		45			7.387	-3-	-,11
650	1.9.1	DAME.	0.00	1182	10.34 2.4	-00	5146	9.149	1,000	12	100	0.795	81-550	1156d +77s	17	41
175,455	DVD I			1924	11665	24911			000000	i divid	11/46/1			4860	100	100
	1			1.711	- 5	- 30			1.10	3	11			23/0	3	31
200	100			2.570	5323	140			3.013	12				2806	1.0	142
700	. 4	(2.540)	5,000	1.427	- 32	40.	0.111	0.140	4.304	22	47	3041	0.179	5.141	-31	42
_	76			4.234	DMS	54.			3.355	54	115			6:428	33	153
				5.836	1	56			2,299	-	15.5			2714	- 3	_11
750	4	0.336	0.128	3.764		- 461	5.00	6.850	1400	114	CHEZ	E225	00.891	KU	-17	-20
1100	100	100	10000	1472	122	-44 60			177B	ni Lini	i de la			7 10h	31	- 23
	19	_	-	5 500	30		_	_	2 448	33.		_		7.556	11	33
	erke:			7.908	marri	41			3 872	nè :	1			# 406	-1	- 4
800	-8		1917	7	43	0.296	0.700	4 F20	D	44	0.99	(0)(2454)	3.675	21	47	
	719		3.896	#2. W 01	54			6.00	E09455	HONES:			7318	32	- 33	
	1.4		8.081	. 5	30.			1 661	5	3.1			SERV.	1	71	
850	1.5		2.121	1.00	45	0.217	0.100	8.907	14	900	0.355	10217	X 5 K J	.33	4,1	
920	-3.3		2.363	21	47.		-100	1 202	20	ER	A0444	. 10,457	3.742	20	59	
	70		5,202	- 33-	1.2			6.703		100	-		1,853	71	55	
	1.4		5.501	10000	99			205					1,4221.0	-11-	-11	
900	1		1.100	1.02	42	9.229	0.191	4.181 1.108	27	25	10.27	9.774	4.992	33	- 65	
	10		5 504	130	E845			0.440	1337	1000			8.410	30	37	
	1			2 3 4 4 8	3	- 1			3 960	-	17			3 1/2	- 1	- 32
W2474	100	Wine.	lane!	3 672	THE .	eks	Secretary.	Sharak	1 590	130	nsiin)	2000	0020	5.000	41	348
1000	1.	0.200	0.120	4 956	21	- 44	(0.250)	20.271	6 125	25	-50	- W.H.	0.259	7.144	20	- 55
1	110	4		- 1m	111	54			7.250	TEN S	200			0.000C	N-	- 50

COMPUERTA DE LAMAS "mcr WIP/T" y "mcr WIP/T-G"

B - Ancho nominal [mm]

v - velocidad [m/\$

Q - Caudal [m³/h]

H – Altura nominal [mm]

Sk - Sección de los condu**o**s [m²]

dp - Caída de Presión [Pa]

Se - Sección útil de la computer [m²]

		- 9							All	ura H [m	ren]	- 11					
					150				211	466	100				456	-	
		v: ievst	Sh. Imil	Se [m²]	im ⁽² h)	dp [Pa]	(66)	S& Imri	Se im ² l	Q (m/h)	rip (Pa)	(30)	Sk (m²)	Se (m²)	Internal	Pal	100
1		1.			917	- 4	11			first.	-1	- 47			1.04		19
21	00	90	0.010	mosts.	1,275	_#_	PL.	note	0.064	1369	12:	100	0.040	witte	1984		13
1 6	200	100	10.000	17	1.758	27	- 53	Pre-171114	0	0.500	- 65	- 22	aliene)	2777	1.85	-11	100
н	-	7.1		_	1.071	-D	-51	_		2.445	74	- 50	_		1.04	34.	-
ite	554				1.007	11	::3=	-		1 170	air.	34	100	-	2.666	INE.	
13	50	1	100	8.076	3 445	77	- 44	garde.	0.182	7 444	11	44	8.118	8.00e	1754	47	-4
		100			1674		32			3 066	1941	1980			EARL	litakit:	1120
		9.7			1,455	77.	- 6			1 A(y)		147			CHIC		. 16
2	00	8.0	E 100	× ===	1,928	-59.	75	9330	11 100	F.603	14.	34.	0.111	200	2375	34.	13
III a	377	1 36	- 115	200	2 576	21	42	XXII		2.910	72	- 47	-1111	-1114	2.035	- 64	1.3
-		-	_	_	3.213	25	-53	_	_	3.107	- 34	-57	-		4.151	34	134
	- 1	-100			349	ù	iii ii			2396	coès	120			COMME	teres.	tisă.
33	50	2	31123	18794	2 998	22	-0	0140	8218	3 427	21	- 43	9,714	31114	1 110	-11	- 21
Ш		ufa)			17100	31				1939411	may b	13300			3 925	rislana	1170
		4.1		- 4	1.714.	-5	1.76			T.58.6	. 3-	39			3 20 A	1.2	
100	00	300	00140	9.100	3.50	12	-86	0.000	0.136	2.725	M.	41.	0.100	00.000	3.501	U	10
$ ^{23}$	w	16.	0.446		3.425	22	41	16,0000	0.196	7.18 K	- 81	44	0,165	0.484	8.456	31	47
4		350			4.754	34	54	_		4.070	- 33	54			3 304	33	11/34
	- 1	160			928	-2-	30			2.200	is Line	24			1379		11.2
43	50	183	3156	00.154	2,890	34	145	DOM:	0.151	3,355	1000	41	8.209	0.115	3.790	14	3
Ш		1			3 806 I	34	54			8.568	31	- 13 - 5A			C-1-857	31.	11.0
	-	1			2.142	- 1	10			7.443	1	31			1.6704	1	- 1
Ш.,		18	Figure Course		03290	13	100			1.672	E840	126411			19000	Ú	11/6
1 24	00	3.		# J/As	31	41	0.700	0.170	A 656	-))	49.	9.229	=:19	3.504	31	134	
		15		06,886.0	33	. M.			6 120	31	-50			3286	133	1.9	
		9.3		3310	- 16	-31			2.898	-4-	_14			1,104	1.1	. 1	
ills:	50	19	3000	8154	4.000	34	.42	6330	Water	4.653	5940	- 90	0.216	10.2766	4544	155	11-59
64	m	8			1141	77	11	1	F-1.14	5 800	- 21	40			4.957	- 21	34
1		-	_	_	15.5%	34	115	_		4.732	- 84	- 55	-	_	2.01	120	- u
11.		iku			75%	12	i di			7 033 4 466	e de la	10			1640	150	100
64	90	- W	1.210	(0.125)	5.141	71	43	9.240	0.204	V.825	14	24	9.279	9.130	K 536	21	A
ш					4.636	51	35			3322	225	55			8.292	100	واللا
		9.			.4.785	5	1193			2.182	3.	12"			2.587	1.3	10-24
l w	50	6.	0.222	0.00	4 177	14	82	0.000	0.33)	4.723	52	42	0.244	0.328	5.120	THE .	11536
I۳	200	9.	10,000	.0.110	3.98	75	.50	0. A100.	0.237	9,395	-43	-27		(V.490)	2.100	15	
-		417	_	_	8.967	33	35	_		1966	120	44	_	_	250	232	III AL
	- 1	1			7 904	-2-	22	1		5.427 5.146	(Dans	- 40			5365	11	1.0
7	00		0.216	0.206	1994	1/	-7	0.38	0.238	8.654	- 1	- 61	0.311	0.262	7.70	21	3
ш		10			CEARCH	33	194			5.544	337	144			9139	134	10.64
1		1.		_	3.216	1	35			2977	- 6	12			1.6.131.1	1	0
1	50	88	W-1400	W460	4 870	.17.	22	W-2017	6.3%	5 500	125	43:	2000	6.347	8,305	ti-	- 25
12	20	113	0.269	.9.223	4.434	25	44	-30 E	6.275	2.344	34	- 68	0.339	10.347	8.267	. 24	- 8
1		146	_	_	8.015	33	1980	-		9.160	37	58			155.100	132	11.76
	- 11	150			9 427	-2-	- 17			3.977	-10	- 11			4.00%	-	1.0
100	00	0	0.200	0.000	MI	37.	43	936	2.272	5.833		245	0.500	0.709	666	1	4
			0.200 0.230 50		1 551 2 144	33				9 703	(e) (1)	53 56			(115) (110m)	n	10
-		1			1441	-7	12		_	4167	-	19			4 682	-	
	20	6 c/m 6/5	97700	320	8	-62	Page 1	2000	5.942	E HE	-45	100 6 2 6	(See 5 de 1	760	190	108	
9	50		W-275	7.263	30	32	0.36	0.309	4371	19.	55	0.363	19.325	9.254	.16	- 44	
		100	45	0.104	91	194			THANK	100	56			15.366	166	79	
				3386	_), _	-11-			4-100	-4	110			5.357			
94	00	HEST	8.165	5 ma.	11	43	5.569	8 100	6.630	127	186	6.403	0.548	110	:11	13	
			Je.		202	77	-11-			3.321	-0-	94			10,054		- 6
-		_		2 104	4-	- 58		_	77976	3.80	180	_		19,293	100	- 35	
- 13	000	-1-1			4 204	n-	###	Lauren		4.1000 2.344	- 11	4			1400	100	di
10	200		11,000	H 256	2562	30	13	0.100	0.000	3.752	-14	- 53	0.850	9,051	11.076	19	- 41
100	9900	7963			10.710	- 81	100			12 340		1997			22.23G	200	-

DAMPERS TEMPLADORES MULTIZONAS

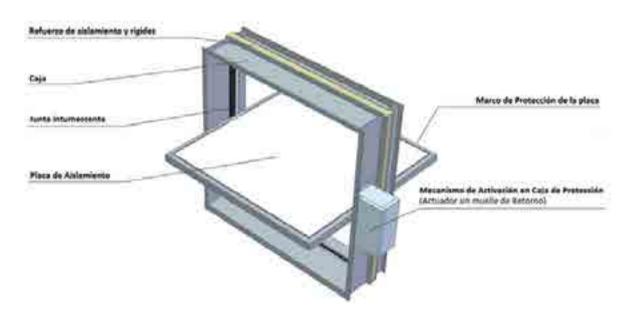
Compuertas Cortafuegos

Las Compuertas Cortafuego MERCOR han sido especialmente diseñadas para compartimentar

conductos que pasan por diferentes sectores de incendio tal como exigen las normativas vigentes

en materia de protección contra incendios en edificios. Además, las Compuertas mcr FID poseen el

marcado CE en cumplimiento del reglamento 305/2011/EU.


Aplicación

- Las compuertas multizona mcr FID-V han sido diseñadas especialmente para soportar fuegos tanto en una sola zona, como en múltiples zonas dentro de una misma construcción.
- Con este tipo de compuertas multizona, realizamos la sectorización en diversas zonas de un mismo edificio. En caso de incendio, algunas compuertas pueden permanecer abiertas, mientras que otras compuertas se mantienen cerradas, según convenga.
- Son compuertas con resistencia al fuego certificada independientemente del caudal y la dirección del flujo de aire que circula por ella e independientemente del lado del que se haya instalado.

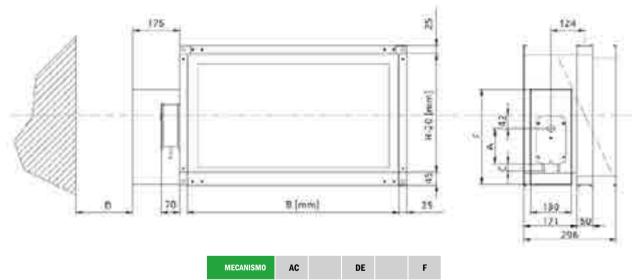
Normativa

- Resistencia al fuego EIS120 (E=Integridad, I=Aislamiento térmico, S=Estangueidad de los humos).
- Compuertas cortafuego certificadas según normativa EN 12101-8 (Sistemas para el control de humo y de calor. Parte 8: Compuertas para el control de humo), según normativa EN 13501-4 (Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 4: Clasificación a partir de datos obtenidos en ensayos de resistencia al fuego de omponentes de sistemas de control de humo) y según normativa EN EN 1366-10 (Ensayos de resistencia al fuego de instalaciones de servicio. Parte 10: Compuertas de control de humo).
- · Marcado CE con certificado 1488-CPR-0448/W.

DISEÑO COMPUERTA MULTIZONA "mcr FID-V"

MECANISMOS DE DISPARO

Tipos de accionamiento:


DISPOSIT	TIVO	DESCRIPCIÓN
	BE24	Actuador Belimo sin muelle de retorno (U = 24V AC/DC), PAR motor 40 Nm.
	BLE24	Actuador Belimo sin muelle de retorno (U = 24V AC/DQ); Pnotor 15 Nm
10	BE230	Actuador Belimo sin muelle de retorno (U = 230 V. AC), PAR motor 40 Nm.
	BLE230	Actuador Belimo sin muelle de retorno (U = 230 V. AC), PAR motor 15 Nm.

DIMENSIONES

COMPUERTA MULTIZONA "mcr FID-V"

- Ancho nominal B: desde 200 mm. a 1500 mm.
- Alto nominal H: desde 200 mm. a 1500 mm.
- Superficie máxima de paso por Compuerta hasta 1,5 m².

Dimensiones en función del mecanismo utilizado:

MECANISMO	AC		DE		F
ВЕ	1981	07	58	13	45
BLE	1303	07	57	03	05

NOTA: Además de las dimensiones Standa, las compuetas pueden ser fabricadas con dimensiones entredias

COMPUERTA MULTIZONA "mcr FID-V"

d - Ancho Nominal [mm]

v - velocidad [m/s]

Q - Caudal [n²/h]

H - Alto Nominal [mm]

Sk - Sección de los condut**o**s [m²]

dp - Caída de Presión [Pa]

 ${\bf Se}$ – Sección útil de la compurte [${\bf m}^2$

_		-			300					134					540		
-		lmod.	54 Intil	54 (m²)	1m ² /30	da	Line	Sh (m²)	S4 bre'l	im'thi	dp (Pa)	t _{pa}	SN fm ² 1	Se (m/)	Q let'red	dp (Fe)	Lyn
		1000	inc.	(41)	11629	(24)	31	100	ines.	564	- 9	170	(m)	lier.	306	100	100
13	000	4	m640	0.029	6.634	-21_	44	12.000	0.009	947	6.5	-41	0.06	DOW	1.663	12	42
П		100	1000	11111	0.051	38	49			137	18	45	1		199	122	13
н	-	10			130	1190	113E		100	206	2	55 20 11			10000		誠意
13	55	- 4	AMA.	anat.	199	75	40	2445	aire.	1.1854	10	.1.5	0.079	0.002	1.328	13	11.52
E		10		Jane	1.081	33	59			1.504	- 8	16	127.00	1111	1999	200	36
m		-12			671	1.9	32			047	- 0	30		_	1.003		L R
12	100		10,000	800	946	-21	4.5	1000%	31,100	1336	19	-37	0.06	0.0%	1.500	- 89	111345
m		10		111111	F1/95-1	8	10	1		2.117	100	N.	1		3.8	-15	-8
m		II A II			126	. 7.	33			MAG	- 1	33			111260		titi Si
1	80		20.00	8,061	1.104	-22	43	0.000	0.169	1.412	1	24	10.100	0.029	1300	16	1.3
Е	883	10		100	用網	1	100		100	130		19		2.50	PRE	狎	13
н	=	CAL.			641	1.8	33			E329	- 4	34			3.407	17	113
14	00		0.770	0.050	17.91		33	9.100	21.20	1.1-003	- 15	1 04	012	5.000	1338	. 25	13
H	000	10		177951	2.101	35	18	12	4.2.04	FOR	-8	- 80	32X =	INVS I	FIRE	45	18
н	=				956	1	33			1-105-	-37	30			3300	13.7	tte:
13	50	d	0.000	0.000	1418	.0	2.2	2.111	0.004	120	-11	-2	0.035	0.11	1.2391	- 15-	1.3
Ш				10.00	用機用	- 25	- 8	-	1	3.175	29	1.6			1.90	32	118
н		2911			118811	1.5	24			1340	17.	- 32			1000	1000	iii il
15	100		onte-	0.007	1-15/07	.12	4.6	0.116	5.006	2.117	- 66	40	0.19	atry	150	15	11.4
Ш	223	10	V	Citte.	2 10	100	10	100	200	2302	- 25	12	2217	1000	250	180	11.8
н	_	100		_	LS:156.3	12	34		_	1,552	7	30	-	_	13565	116	H3
13	50	- A.	0.716	0.000	5.1:734-3		44	9130	0.108	340	-16	-63	0.100	0.03	2.922/	34	4
M	-	10	10,000		200	53	35			3101	44	-15	Trees.	9,100,	3.897	15	129
н	=	100		_	1020	100	1.85	_	_	1.600	-7	33		_	115	1.6	tio)
IV.	00	. 6	9.08	17 000	F (1000)	11	45	0.150	Usts.	1.2-540	- 31	43	0.18	0.115	1. 3. HHE. 4	14	11.4
-107	001	- 6	COM.	1,000	PART	29	18	2.77		100	33	-3	100	100	FRE	26	110
Ì,	=	2.00			1180	1	1.8			14.836	- 6	10		_	1,502.	. 6	12
14	55		0.110	0.000	ELZ MONTH	.79	- 25	0.360	war.	279	54	43	0.350	-6.160	1,454	194	1.3
F		-10	OTHS:	1100	7.70	-25	N1	10.72	2707	Y 60/7	40	90	7,031	200	1300		11.5
L		100			(150)	100	35			1.67%		10			3.400	-	115
	100		in half	0.160	1,641	338	- 23	0.0%	6118	3.964	- 24	- 9	6.21	0.177	L 3 3300 I	14	- 61
117		-44			日憩日	- 33	59			133	-0-	3			189	-5-	113
H	=	200			138023	12	75		-	2.58		3.7			E2890	1.5	113
ш		. 1	0.000	ent	1.4.421.2	38	10	4.70	400	\$ 507 \$588	- 54	di-	921	9797	5.668	- 14	- 0
Е		10		2000	中純	-8-	18	8211		E 558	24		2221	10000	月間	34	聊
н	-	100		_	113011	100	34	_	_	13300	-8	8		_	33663	130	iid)
12	00	- 4	0.000	2.131	2 636	-14	43	9.526	0.036	3.015	- 73	40	021	6311	4.752	-37	4.11
П	-	10	1	1	EWE	29	100	1		丹腰	-8	-8-	P.A.		6 876 1 970	11.4	13
H		040			1.162	17	138			LESSO.	- 6	10			1,60	1.0	tos)
141	000		0.200	0.146	3.15+	155	44	0.256	0.196	1 1 3 3 4 1	111	4.4	23	0.744	1 114	143	40
10		10	1,750	J. Carry	自物料	29	- 55	1000	0.000	3.66	- 22	- 35	100	3227	1.665		118
н	-	1000	_	-		113	100	_	-	1100	15	3	1	_	1307	105	1100
10	100	- 8	0.220	6767	1719005.1	36	85	9.27%	0.210	4.050	32	11	0.00	10.201	5.085	- 52	11.34
m	130	- 6			PARE	39	83			1300	- 12	100		100,91	370	135	112
H	-	TAIL			1393		39			187	3	1 9			Fill	10	11:30
1	200	- 0	0.340	0.115	1.3.794.1	-31	47 47 55	0.500	6.195		-32		6.56	intest.	1 1 2 1 1	0	1139
		10			6.000	29	15			6.774	- 63	3.5			30.627	62	100
H		10			2.73	12	37			2,062.3	18	16			1.4805.1		113
177	200		0.260	0.000	1,4,100.7	73	4.7	0.479	1000	1304	-12	-8.5	6.00	NAM.	130	12.	1.04
100		10		1.012	0.1111 0.1111	35	99	1	1123	5-9 113	1	- 8	-		U-511	LISBU	18
		13411			7/2/9400-1	17	36			E238F	3	T (in			目標	13	Ħ
19	000	4	0.220	0.304	日	à	12	0.966	9.014	1387	3	- 44	0.42	Dibia.	1.633	-37	1 44
		-fi			日根村	-22-	56	1			-8	33			17.295	25	13
17		581		100	1356	3.	35			KT30:	7.5	Ji.			3.99	:5	1113
191	500	. 4	81,5mg	16.219		75	-66	8.15	0.154	186	11/	44	0.46	8.039	0 0 THE 1	2.5	
10	000	-	5440	الضالا	785	-	1 ()	1000		1000	10	118	1,717.7		1992	13	+-18

H - Alto Nominal [mm]

v - velocidad [m/s]

Sk - Sección de los condut**c**s [m²]

Se – Sección útil de la compurte [m^2

Q - Caudal [m³/h]

dp - Caída de Presión [Pa]

					350				1.70	GOD.					450		
		5¥.	34	14	0	dp	L.	514	Se inci	.9	dp	L.	35	1× (m)	0	da	N _a
		Emile?	[m²]	[mr]	852	[Pa]	1681	121	imi	3950 550	(2)	66 11	[m/]	(10)	1m5A)	(Pa)	168
16	nn	7	11.000	nate.	70		47 50	mann	0.060	1.400	17	2.5	A dram.	0.079	13.00	-35	- 4
10		16	1	1	7 15	M	50	-	1	1 691	- 29	100	-	1	120	26 41	1
т	-	0.40	1		1.66	70	.53			1 245	- 1	73			1 434	1.4	128
12	50	- 4	0.000	0.024	1390	16	47	0.100	0.007	3,35%		46	2.01	0.008	3.13%	33	100
16	25				FMH	26	55 55	-7777	7.77	7.01	- 6	43	71114	(2.75)	185	- 22	- 5
m		18.0			111.278		22			11420	10	30		_	1310	1.8	100
15	00		11.115	113001	1.010	- 22	43	11.129	10.104	[235]	33	40	8335	3119	1.2556.3	12	A
His		-6-		-	月粉井	-75	8	1		1399	-17	10			FIRM	- 22	1
т	= 1	3.4			1327	100	-35			1.791	1.6	97			1.92%	3	100
1.5	30		5346	0.10+	1201	36	100	-0140	0.141	11/4/01	172	40	9.754	0.00	19961	-ii-	-4
B	33	10			1730	10	54		11.50	1340	- 54	6.4	100		1990	- 11	- 8
		. 4			1.705	1.5	35.			1.391	70.	TI.			1235	-3	E31
9	00	18	0.540	0.110	410	29	40	2/100	D Vide	3790	72	49	0.180	2 rive	4562	21	4
Ш	- 8	15			17762	-79-	35			4.987	%				1780	33	- 34
16		54.3	mary:	10,000	丹野	1	30	Tree!	HATTE.	12.26	7	30	Ser.		3.50m 1.040	10	13
14	50	-	6.158	9 (3)	Hiller	22	A1 A8	0.109	6156	3.60	21	-17	9.703	3,778	5.582	10	4
		30			1.4.099.1	34	34			3.000	33	14			6.471		
		10411			FFRRFF	181	1			177	3	-36	Land		186	- 5	120
13	00	22000	2175	0345	LANGE !	-2-	26	13,200	2,173.	1.4 90375	ii is	40 45	3525.	0.798	1,000	17	128
1		- 15		-	F5'324'	54	55			6 72 E	30	54		_	7,129	76	1.5
18	72	200	Lact?	4001	Hor	-	- 4	Dear	100	1110	-1	- 8	200	10000	High	-	18
13	55		2791	3.161	131167	ığı	41	8.220	2.990	3.441	78	Ab	17348	0.118	K225	33	14.
H		19.		-	1.394	H	20		-	E 85F	30	A6 22	_	-	1.001	.76	- 33
Ь.	60	- 4	ninin.		3.536	10	40			523360	1	37			6.13	-	2
ann	99	- B	9259	0.176	5.05	93	43	0.294	0.226	5.970	14	. 75	11.520	0.736	6441	17	- 4
н	-	100	-	-	127711	29	5.5		-	7.474	37	53	_	_	7 354 3 301	30	3.0
	20	The second	0.228	0.140	4.156	-58	30 40	6.265	18.22%	400	10 11	36 40	6.386	4717	1.3.500	- 8	-44
			11.414	11.144	320	33	45	15.140	16.000	# 40%	110	49	15,000	10.740	ENF	.1/	13
H	=	230	-	-	4.070	22	30		_	1.00c	27	30		_	3,986	-25	3
21111	00	0.00	0.24%	0.007	6.4476-6	10	41	0.28	0.242		7.5	20	KIIS	-0.222	2.5004	- 0.	- 45
m	~	100	100		自独生	100	- 53	9.40		19作	- 33	10			100	- 19	1
H		1			1 910	1	-			2.900	1	30		_	A 560-1	- 4	
l'a	000	-1	9.250	41.217	E-K-THE-E	_m_	10	6.32	6.222	8.058	- 20		0.000	ont:	0.00	0	
16		-0-		Barrier.	中級	-8-	51	150	Heib.	180	-12	- 25 35	J=4	1537	9 CB	76	2
т		2411			1.000	4	27			3.382	100	35			5.00	- 4	128
10	00	câu	II.315	0.266	1,754	- 23	23	n360	am:	6.724 1.964		54	15:406	2750	10.754	16	4
П		50			1996	73	55		111	11,210	36	38	1000	1	17.530	25	- 6
		3.5			1300		38			FYME:					3.500	13	135
148	200	ain)	4.550	8.7%	1300	-6	41	to dou	11,314	38362	Ý.	59	0.850	0.396	01.685c	36	3
H		100	1121	15.7	10 46 A	-%-	54		110,0	12:456	72	100		11 100	1107 256-1	- 546	
П		22477	111		1797	1	33	11		S401	117				8228	14	12
133	100.	1811	0.167	0.306	9 377	- 10	45° 800	0.840	0.384	12.50E	10	42	1.465	0.436	123/6	19	- 4
Ш		12			(F 22) E	- 31	.56			13:102	.36	4.4			15-04.	26	
1	11			J	199	+	6	Surin	but.	1505	140	10	i rui	Corre	10 704	14	Ħ
12	200	080	0.420	0.505	10 230	76	149	0.480	3.415	115,951	1	40	150	54%	1969	2%	13
1	1772	10		TAL.	19790 E	35	34			16,997		55			17.107	.34	-3
	1	4			230	10	32			9.774	1	32			77.120		19
	200	300	0.611	6.383	用額	100	8	0.520	0.400	12.95#	9	50	0.645	2417	特件	16	13
-		12				22	36			1.10.191	- 23	32				23	
10	10	-	1000		1.991	10	43	1000	the state of	#975		43	444	1000	11.9%	- :-	3
11	400	0.80	11.020	0.410	1.05.535.1	1.09	50	1,550	0.439	1984A	36	58	1331	8.554	45 AUT 10 OLD	3	138
-	44.7	12	-	-	LEGGET	77	U.			17.4H	8	32			10.918 18355:	-22	
1		0.0			5-9 V90 T	. 3.	43	III. FERRE		1.12 740	14	6.5	200		0.80		-0
1/3	500	-	0.00	0.664	1307001	7	35	11600	2,600	SHEME	-8	55	10.079	7,194	操	9	-8
100		110			5,084	76	56			18,480	- 23	.56			177.584	77	1.3

COMPUERTA MULTIZONA "mcr FID-P"

d - Ancho Nominal [mm]

H - Alto Nominal [mm]

v - velocidad [m/s]

Sk - Sección de los condut**o**s [m²]

Se – Sección útil de la compurte [m^2

Q - Caudal [m³/h]

dp - Caída de Presión [Pa]

			,	500				he	SELECTION SECTION	WALL THE				100		
	W Invited	Ib im'i	,54 (m)	imint	de Pel	K _{ex} DBI	3k lm'i	Se (ant)	len'rei	dp (PM)	L., 1681	58 [m²]	Ser (mr)	Les Chi	€ρ (Pk)	L _{ea} Telli
	HAS	-		188	A.	-28-	-		1.1591	- 5	18			1488	-3.	100
300	1	000	0.000	2,369	- 82	32	0.110	0.000	2.767	an .	12	0.110	0.109	3.765	23	47
	111	_	_	1.3-241:1	14	1.6	_		L VVIII		33	_		1.50	1)	_ 33
320	1	2312	0725	7.418	10	30	1000	222	17.00	3	- 25			7 HT	-20	-03
258	2.	9125	8152	1000	13	-6-	0.0%	0.04	1991	23	.000	16 1431	8.557	-300H	-3	-21
-	10	_	_	2.907	-2	1300	_	-	155781	31	29	_		2.014	4	-83
306	E.A.	2006	0.194	7.596	,	- 81-	0.349	(2.14W)	1	- 12	41	0.140	01500	1327	-0.	-44
44.0	1		800	3.852	-77	40	1000	1,000	1.04	30	46			1.00	70	- 51
	A.			3.268	-3	- 11			DE TONC		0			1300	- 8	
220	100	0.179	0.046	1.177	100	43	10795	97,04	160	-3-	20	0.710	ir int	136	=%:	- 41
	10			2.500	- 11	1.5		_	6.250		15			n 684.		-21
130	140	-		3.707	15	-11		(Hay	12.00	13	70	HCCH		127		- 39
420	Dist.	47	H 12H	BORG	.79.	E.AR.	22.m	15.138	1,6364.3	29	Jan.	H 3401	1175	8290	= 80	344
-	45			£ 422 £ 890.	10	290	-		2.142	70	14	-		7.867	-6	- (1
490		9225	0.101		. 4	-11-	10 248	2213	2.4.521		00 00 20	0.270	0.210	5.301	. 4.	- 40
.420	10		30.4000	3瀬:	177	100	200		ある場合	7/	13		- 240	70% 1541	- X	-1
	120			7725		- ii			13821	1.6				(300)	1	
456	-4	6.254	411)	4.517 -0.628	101600	15	SIR	5 349	1367	93	7.9	0.356	0.719	3.001	-4	33
201	10		1117		-31-	-12			F-7302-4	34	0	100	-11	2.575	-2	
	114.0			181	-	155	1		188	1.0	79			-B731-4	= 60	-34
551	la la	6,725	0.145	3.792	E Û	45	8:303	9,273	140	30.	2	4380	# 300	9.834	=4::	-46
	10	-	_	9:534.	.23	.51		_	15-214	22	100			Th 794	12	-0
3333			112.5	9.710	+	- #-		100	PARE!	-4-	-8-	-	-	VOTe:	=1::	55
900	- A		2.186	3 614	9	100	4.214	3.298	E 571	11	100	2.299	6-339	W-ER	-11	-49
	4.5			18 U.S.	25	31			1.60	21	36			3318.1		28
630		0.315	0.190	166	15	41	0.308	9.321	8.964	15	44	10 300	8.305	7.604	- A	. 29
-	10	1.000	00000	10.656			233.0	0.52-13	11.000	77	100	2000	- 210	17.25	-1	100
	100			5.610		130			1,330					3596		- 8
709	100	0.958	0.512	5-901	-0-	- Air	0.565	330	0.900	-A=	39	10.426	1.30	moor!	=4:	115
	74	_		15.239	75	15	_		C 486	77	5.6			737597	-0	726
150	175			7.727		-01	10000		HMF	-1-	20	1		2001	-71	- 39
137	100	17	17,567	3036		40	2+69	0.307	10.48		45	0.497	0.47	1039h	-11.	43
	10			5,780	- 0	-Mi		_	15 786	27	30			FOR	-4-	- 33
000		0.41	5,465	1-85/4-1	1	- 79	0.406	3.666	4.640		462	0.520	8.490	CONTRACTOR I	-3.	- 28
	10			440	-	70			PERMIT	7	2			1	-#	4
	1	2.01	40.00	8.422				- 1.	1,548.0	13	10		40.0	13300	- (_#
1800	histori	4.5	9146	12.645	100	40	B.558.	5.6%	1110	133	46	8.608	156	(B)(20E)	=0:	-61
-	10			1.16.056	75	- 14	-		11500	73	56	-		1-FR:656.3		34
	1			10 592	-	19			41,735		P)			12 973	7	-
1100	18.2	2198	0.466	4.09		- 25	0.00%	11540	152051	.14	4/3	10,660	8,001	Sign		48
-	19.			7.762	17	32			13.60	17	55	-		91 622 S	17	35
1200	4	4.0	0.695	7.707		*	5,865	5.56	1.10/850-1	77	36	0.139	EA15	9439 3415	-7.	1
200	100	300		18.55	- B-	-			限響	- y	#		5	17917	=¥	-8
	4.0			3.519	-5	27		1	0.93850	13	.56			(3638)	= \$1	15
1800		0.65	9.500	10,600	15	46	6.775.	2.065	T11 (179)	179	-75 -466	0.780	8.710	115, 3(2) 1	12	-
	110			1.10.622.1	-35	739		1	11998	- 55	32			學與	-9-	154
2500	FF		1332	1000		100	10000		14 999	-9-	- 11		-,	36 5 11	=9:	4
1400	ELIZADO.	: 87	0.024	47-000s	100	183	0.276	0.004	12 906	.12	-99	0.200	0.754	300	77	-45
	10			27.478	4	- 51			1.21.096	-33	1.7	-		27.50	19	1
1500	1	Ars	0.000	74,400	-	-37 30	ners	5.514	12070		-0	0.000	0.00	17.0%		1 4
1800	100	1117	1,000	1500 1000 1000		- 30 - 10 - 11	11475	1.00	34.422.3	3	100	11.900	8.009	2010	-0	1.0
	1800	_	_	124 088	- 20		_	-	(36394)	- 30	55	-		26.991	-19	. 34

H - Alto Nominal [mm]

v - velocidad [m/s]

Sk – Sección de los condut**o**s [m²]

Se - Sección útil de la computea [m²

Q - Caudal [m³/h]

dp - Caída de Presión [Pa]

	_			650	1	- 1		he	700	BL		F30.				
	invit	Sh.	Se Int'l	[m'/h]	-69- (\$4)	L _{max} (de)	Si lm'i	54 100°1	Q jer/jej	(PA)	L _{ini} (ent)	Sk (m)	Se (m²)	in thi	(64 (84)	100
	4	100		3.216	1.5	1000	-		1,860	- 62	26		-	2.00€	1	1129
200	-6-	0.000	0.110	3 433	Can.	1042	0.00	0.120	3 701	- 4	42	0.150	9.176	8.000	- 34	10
1	79			4 299	31	52.			1:4.653	34	5.7			5. gat 1	-37	28
100	1.4		100	2 346	20	100	~-	1000	2.775	5.	30		75.2	1.80	5	28
250	1	9.767	0.719	230	100	40	0.379	0.143	4651		41	0.146	81W	380	- 80	40
1	1900			3.364	81	- 53			4.614	31.	52			8.704	II.	-
1000	6	Same	100 V 10 T	2856	10	100			5361	10	10			2400	10	i ŝ
100	118.0	0.195	0.179	5588	18	H1486	0.710	.0.194	5 5 9 5	10	3.47	0.779	:0.309	- N-1651	36	16
-	. 13	_	_	0.637	- 17	- 53		_	101	26	11.	-	_	3500	75	- 4
122	100	12.02	21.2	F109	10	- 47	2411	2.5	4 531	10	40	200	200	3.80	10	113
330		0.338	0.2119	6,009	TIE	TARD	5.588	832	6.002	12	2.482	8.263	5.544	TE 00#	31.	40
-	-10-	_	_	2510	- 7	1000	-	-	3.715	-17	30	-	_	h.22h	-27	13
200	200	la signi	IN NAME	6.549	10	41	90100	wasi	5.521	10.	41	W 100	36.Vm	6.071	70	41
100	-A-	0.362	0.133	1589.7	2 W C	425	0.288	0.288	7.64	17	415	0.300	9,270	25,000	77	11.0
	177		-	8532	1000	100			6 552	100	34			10 022	-	118
450	6	6 ZW	0.250	5-70)		1.0	0.215	8,391	0.322		40.	0.125	0.446	X 9008		1 44
133	1	2.511	2300	D223	1000			277	0.465		47	4000	200	9680	=8	119
	283			0.655 A,205	100	1329			4.655	2.0	3			35 BH.	-2	2
366	-	6.505	0.298	0.837		46	6356	6.333	6.922	4	-66	0.315	6.340	F.58F.	â	140
1	10	15.00		10.73A	100	31			9,802	21	53			1000	27	30
	-4.			5,549.	EA.C	1.29			3.10	1	26			5.92	_A	1118
550		0.THE	0.000	7.731	- 1	10	0.385	2 155	1 674	3	10	(41)	0.363	8.266		0
123	10.			25,239	-#		1227	275	等級	-11-	53	111		11.00	-1	- 5
	1240			\$199	100	1574			2.583		27			(#U)T	-71	11/2
100		9300	0.358	90,299	orien.	1040	0.430	0,386	0000	-A-	3	0.000	100410	0.00	-8-	3
	-18-			1-12-324-1		10			F79 0541	-1	51			10000	-31	113
650	135		Committee	15529		1295	Samo		100		12			133	30	11126
550	resident to	0.423	9387	1000	tion of the	inlia	0.416	6370	100	=00	-	UASS	0.252	70.60	-0:	112
-	10.			刊號	20	1.17		SELL		- 29		-				5
	100			9.012	175	110			9.700	-	19		1 1	10 SJA	-4-	3
700	1	0,455	0.011	120%	571875	1044	0,490	0.452	14023	- III	130	0.525	0.487	14.031	No.	1118
	18.			14-016	- F0:	100	_	_	36339.	20	13	-		17339	10.	11.5
1000	6	COST	14/1500	16,299			4000	2000	7.463	-	- 24	7000	Take.	17.927		1119
880	CAL	6.52B	5,477	1000	DMA	100	8,566	8.507	UK 88A	11	-27	0.000	0.557	1988	-8-	112
	734S		_	7728	11	100		_	15 00%	10	77		-	0.045	-10	2
nnn.		0.000		71-556	- 1	16			3 802 3 3 4 4 3	- 5	33			15.530	4	11.38
990		9.585	82%	LIKANE.	10	44	0.630	E201	22 100	30	-85	9515	0.000	1,000.0	-10.	113
=	117		_	6.682	16.	12811		-	9.800	16.	-20		_	77.550	76	24
1000	-6	0.000	0.000	17.165	(th	344	6 /00	0.076	19.964	6.	36	0.704	0.000	19.034	.0.	34
1.000	100			异胞	100	H			神经	10.	45			2005	16	11.0
10770	1.60			9.440	0.314	11080			7 (A)	3	31.			131,535.1	- 4.	3
1160	. c	678	0.656	34 501	-	40	0.770	0.777	75 340	-5-	42	0.035	0.266	16.537	-	11.30
10000	100	Track.	10000	1 / 2 mm t		100	100		資福!	- 12	53		10200	77 200	10	110
	140			10,799	120	ISH:			6764		- A1			12.000		1112
1200	10000	0.200	0.895	15,410		nullion	0.040	0.725	22/306	=W=	4	3000	:8:A05	A354	- A	2
	. 191			129.944.3	-15-	53			22.960	19	갶			1000	375	0
1000	14	-com	1111	1.111553.1	17	100	AUTO I		15.000	- 5	41		VIC	135029	- 2	4
1300		6.54L	9.17%	22.31a	idei	10	8-500	0.040	06.188	0.	7.40	\$975	8.665	THE REAL PROPERTY.	3111	100
33.65	THE	11 (5.54)	1,200,15	(VIRS3)		51	2.00	A/-2	20.234	7	27	- 117	-	1.042.5039.1	15	1110
	35			12.0%	191	E0#E0			388					34.02	-3	Πŝ
1.000	also	0.010	0404	24431	12	46	0.000	100.0	26 547	36.	49	1,000	0.904	25365	-8	2
	107			1.000981	-150	- 12				19				D 245 25 HA T	-15	1 50
1000	4	100	1,00	13-89A 19-320	-7.1	ALC: PERMIT	71,500		E0.6641	-1-	-		New?	100	-4-	5) 3) 4)
1500	4	0.975	11.654	19.370 40.747	TOWN.		1 (199)	0.90%	22 110 27 000	tr.	47.	1105	1244	77.550	- ii	40
1 1	Hoc	(Lecond	1	32.184	10	5.			14 1114	19	158			30067	-11	39

H - Alto Nominal [mm]

v - velocidad [m/s]

Sk - Sección de los condut**c**s [m²]

 ${f Se}$ – Sección útil de la compute [${f m}^2$

Q - Caudal [m³/h]

dp - Caída de Presión [Pa]

		846						-117	850	****	998 -					
	lmiti	in in	5e Im'l	ios/hi	tip:	500	Sk. Im'l	Ser lin's	im'mi	dp (Fal	100	Fk Im'T	Fini	im'/bi	dg. (Pai	ton.
	141	in L	Im.1	100461	3.1	19	1114.1	100.7	133901	100	128	300.7	110-1	2,436	75	10
200	1	0.150	0.149	3.723 4.207	100	AD AD	0.00	0359	1410	3/9	40	0.180	0.100	100	39	- 41
	- 10.			-2.33.6	15	3.1			9.721	35	17.7			4 8 7000	30.	100
12,35	1241	Laru'		2,650	240	- 56		0.00	1480	5	N.			1394	-5	138
250	100	0.200	0.187	4 (03 1 30 E	100	41	0.213	.0700	4.798	38	40	9.225	9.213	E 001	10	100
	10			0.714	- 10	54			1 1 1442	974	54			7.654	10	- 55
100	1	Same	W10.401	3 223	-	一片			145	10	25		10000	-1995	10	17
100	5.5	6.902	0.726	6-645	540	-48.	0.295	0.759	3.758	3.8	48	0.570	3.754	100	142	- 64
-	10	_	_	1.05.1	28.	- M - 50		_	4.012	23	Я	_	_	4704	77	- 8
150	-	4.00	0.001	5.640	- 35	- 41		4 ***	4 018	4 10	45	4 140		6.206	-	- 45
120		4.00	0.540	7 646 7 930	0.	48	2149	4.158	4 1713 8 5004		- 0	H.17%	0.286	165	- ()F	
-	40	_	-	9.400 A 207	-	-20	-	_	10.000	97	138	_	_	14.020	1	-3
400		6.305	0.500	6.446	10	41	0.348	0.00	1.4411111	10	42	11.360	2312	1309	. 4	1.63
1	100	, and the		6-504 15-747	(40)	- 49			12 AGZ	17	25		1	9-74K	19:	-8
1	-11			4.034	1.	25		_	399		29			3.662	17.3	152
255		0.100	E-196	7.254	-	100	# 339	8.358			160	0.425	0.791	4 223	1	- 25
183	. 10.	2.500		12 000	-	40	- 111	11122	20 Dis	77	40		1-21	NAME.	D.	10
	-			530	7	7.79		- 1	(A)101	-7	29			18.091		25
140	14.1	0.400	0.073	2-057 96-747	140	46	0.425	0.390	21-662	34	43	0.450	9.428	12 56E	-15	4
1(100	ë.		自第	- 77	- 31		- 1	代表	22	33			传统	- 1	- 53
1000	440	7,300	27.0	5.904	T/EU	- 23			5.99	-51	23		11,	3700		102
100	els.	J3-600	0.489	11.00	100 2	471	0.996	77,438	117450	-ú	40	199	0.44%	(140)	1136511	13
	10			14.771		0.0			11 800	25	10.		100	(35.757)	70	10.0
	C#15	Ü		3 663	-	39			10.316	- 2	25 40			15.964		1.50
600	180	0.480	0,648	32 891	481	380	30.510	-09 400ki	18.84	- 13	THE STATE OF	0.540	9506	14309	to fee	14
	1.11	_	_	16.138	-20	3.5	_	_	17.194	23	36			16 /24	19	LL B
122	14	100	-W	(0.47a	4	10	100	444	11 (N	-31	30	Vin	1.Xe	7.484 (1.870		- 1
MG	-	A.Sm	0.085	0.066	190	98.	16.629	44.61	DH-901	-0)h	1.94	0.550	96.80	10	30
-	10	_		7,520	- 12	-8-		_	18 624	73	5.5		_	At 700.	15	- 20
206	4.0	5565	6.625	11.780	19.	1000	0.595	0.555	£ 52:0000 I	6	38 39	0.690	0.540	View.	- 6	122
149	711	0.00	0.040	11 030	100	1	4397	0.001	16.047	10	46	0.000	0.590	1.109	10	1
	100			8304	1			-	20-059 (39.850)	- 2	22			37AA.U	1	10
005	4	2343	0.597	12 300	-2-	. 34.	8,850	9.637	1.01296	- 6	33.	6726	0.672	(4.610		B
	1	300		21.425	100	**	2700	Vines.	3E 360 (30	- 19			19.165	30	20
	5.400	11		2.668	- 3-	24			10.316	- 3	26			10 164	1-3	110
100		0.770	0.0071	34 502	- 2	40	0.165	0.716	20,632	6.	46	DINE.	3701	15,446	4	21
	737	6		24 170	- 10	51.		1	125 790 1	100	2			27 410	10	
1000	100			50.742	J.L	540			110,4607.3	-3.4	349			B 983	-	á
1000		5.890	0.786	21485	100	34	8.00	#1.00h	22 02%	- 10	39	1,000	0.5%	34 16X	10	31
10000	10.			1,74,955.	W.	12			28.654	100	62		1000	30 455	36	. 0
	0.00			17.725	-	- 19			32,606	-	29			30,101		20
1100	1000	0,500.	0.023	23:635	100	46.5	0.935	20.01%	25,217	100	42	2,990	9.931	26/855	10	100
-	Tip			29.547	26	32		-	35.25	15.	33			35 502	16	- 4
200	100	3.122	230.00	19336	-	-17	Visio."	-	2001	-	- 73	100	2536	P 833	-	- 6
1200	Contract of	0.800	0.095	CISTALE.	160	140	1.000	= 884	122,656.3	10	46	1.089	1.935	26.238	3	- 0
-	10			12,227	- 2	-6-		-	114.387	J.	36		_	15.507	14	31
1200		1000	0.670	10 943	7	- 15	(100	1 603	17 YET	200		1,376	1300	1550	13	315
1800	-8	13000	1.416	经额	190	16	1,000	1,144	1600	-14	9	1000	(1000)	機變	10 10	133
	10			PS 040	- 2	- 14			16.04	12	30			7:11: 665-1	17	
1446	-	11199	1044	75 079	1	- 37	1,995	1116	24 021	_ h	40	1385	1.666	25.583	-1	
1000	10	0000	1222	30-029	II (C)	1.1	12.22	1415	40.03	14	340	-		A2 630	14	-
	118.10			26.116		CMC			17.00	-81	24			1.10.274		23
1100		1,300	1106	34.176	- 4	- 41	1.225	1100		- 6	1	1,350	1.709	36.54	1	-11
100000	-			\$2.20F	9	- 40			1988	-6	- 27	1	(1000)	于透透	19	-4

H – Alto Nominal [mm]

v - velocidad [m/s]

Sk - Sección de los condut**o**s [m²]

Se – Sección útil de la compute [m^2

Q - Caudal [m³/h]

dp - Caída de Presión [Pa]

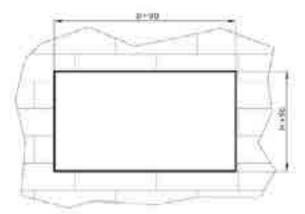
	12.0				1000	110-70-11		Page 1	Tue	tipos	1014		1700					
	fai	44	Em/1	Se love	Imi/MI	(fp (Pa)	sint.	Tim's	Se.	lm/thi	(fp (Fe)	tient	1m2	Last	Im'thi	(Pa)	total	
100		A 1 1 1	15000	11000	3-72A	10	40			3 5/0	10	47		1000	3.50A	10	90	
200	Mini		0.200	35.1004	3.649	10	III	0.240	8.209	8.025	1100	HIL	0.244	B 229	10001	DENGU	-00	
		2			3 805	4	37	1		3.766	2	57			ELGI.	-3	37	
250	4		0.258	9:232	5.408	10	/41	0.775	0.262	5.048	12	41	0.000	0.282	A 126	10	- 67	
2.54	94	튀	80,000	HIVAC	6801	18	40	SALV	0.966	2501	CMC	40	91.500	0.000	8.24	-	-09	
					LAGAD	0.80	新	_		25%	200	35			134551	1540	33	
300			0.300	0.264	£ 130	10	41	0.330	0.310	9.723	10	45	0.300	0.344	7 426 A 905	- 9	42	
		ė.			10,237	17	68	1		TE202	17	- 66			CHARLE.	38	58	
200		я	Tues !	Van.	7.155	- 2	41	10.000	CONV.	7 966	-	42	Covers.	tanual.	0.664	-	43	
256		111	0.350	0.337	9.530	100	49	0.385	0.566	TR.3964	1.57	20	0.420	0.407	11.552	150	45	
-		2	_		11.920	74	26		-	93.18G	14	- 73			0.000	14	52	
400			0.600	8.778	2177	-	30	n.san	8.415	79-03.2	-	377	0.400	8.458	12 00015	-	39	
		F	77		10 898	100	90		1111111	E13-050	30	10	711	11.45.00	11.00	30	- 81	
				-	0.00	550	- 33			(0.779)	10 At 10	25			LIVASO.	300	53	
450		=	0.450	0.626	3 195	100	85	0.4%	-0.973	16 167	1100	10	0.540	36550	74.180 71.130 14.162	1100	40	
10000	9	-	120760	1.00-	15.375	20	0.	2000	Decire)	16,505	20	17	1.000	44.400	11000	70	-6	
	13	Ξ			10.217	100	20 70			7.58 11.797	100	- 28			15/99	100	20	
300	0.00		0.900	0.474	13.933	-13	ay	0.300	0.5/3	13,062	- 900	80	0.000	0.574	10.302	-73	0.0	
-		-	_	_	1 17 15 15 15 1	-	53	-	_	1.55 828	AF.	30	_		130,426	-21	54	
1424	-		0.550	00000	17.736	7	80	222	10.290	12 4/6	7	40	10000	0.000	11614	7	30	
550	100	111	0.550	0.520	1195	-31	47	0 600	0.57%	克养	- 33	Alt.	0.600	0:630	136 555	- 37	40	
-		0			10 /31	IN ACH	30		-	LOCOLITA	PORCH.	36			0.061	PUB.SI	20	
600	200		0.600	0.556	002.21	7	40	0.666	0.036	18 025		111	0.720	0.656	19.002		40	
2	8	-			70 434	15	53	-		72 504	12	5.3	Charles.		24.354	13	53	
092	30	\subseteq	Lange 1		8.891	TO KO	29	1000		12 504 18 781	U.E.	- 20	N 07	70.1	50.727	THE .	- 19	
850			0.016	- D MIS	13 202	100	IC IC	0.715	0.600	10 6111	100	4C ICT	9.700	III 745	16 000	0.0	40 88	
		5			22,138	19	53			24.476	1.2	- 53			25.516	13.	53	
III	100	Н		****	74 304	6.	38.		W. 755	18.544	5	30			1-49-230	- 5	29	
700	000	F	0.700	0.663	18,391	.35	48	0.770	0.733	31.585	119	49	0.040	0.003	热膜	1.2	35	
		-			36.694	10	3.0	_	-	32,050	15.	300			1002302	1200	-31	
800		9	(1.600	8.769	23 706	-6	39	(1.000	0.017	18 825	2	36	0.000	9040	5 19.0000		35	
	1877	Н			1999	18	55	1		開榜	- 15	- 46			FINAN	100	-55	
	. 2	я		77.74	12,260	-3-	29	The same	1111111	2 556	-7-	2G 40	37.45	.7711	THE REAL	170	29	
1900	1		0.00	B 853	18 320	230	49	0.000	0.941	20.334	270	87	1.600	9 8/35	19.304	13903	47	
	_	Ġ.	-	_	10.650	75.	57	-	_	DOB. EL.7	14.	53	-	-	1.87.130	14	-52	
100			1600	8946	35.752	7	40	1700	1046	22504	-	30	i žno	8 kas	24.354		30	
1000		F	1 Alexand		131399	18	107	1770	1144	聯舞	18	-9	1 min	1	A3 005	- 30	29	
-	122	_	_	_	135.965	100	29	_		19.569	100	29			静脉	100	13	
31100	0 -		1100	1-047	29 644	100	46	1.200	1.151	14.552	1967	40	1 100	1.701	30,300		39 43	
0.00		H	12.4752	1-2649	15-205	16	51	12.00	111000	#1-477	15.	53	L COL	mora,	150.00	14	- 6	
	H	_			IE JAY	100	20			356	TRO	47			19.503	100	70	
110		2	1,400	7(708)	32.694	19	40	1,100	3 535	16 (56)	128	60	5,440	37,8179	39.000	3.9	46	
	1	£.,	-	_	1.40 067	54	53	-	_	35,507	14	_52_	-		149.507		_53	
130			1.300	1.250	35,200	5.	75 46	1266	11000	29.662	500	30						
130	170	9	1 100	1.750	博士	6	46	1.400	. F 200°	最級	100	46	1					
			-		10.60	12.0	30			14695x		- 10	50					
140	0		1.600	3.554	7 Oct 875	- 5	311											
	B1444	0			1933	64	32	1										
1000	3 43.0		1350	3-500	47 428 30 428 30 010	-	- 26	1										
190	5 000		1,500	9 419	140-B47.1	100	19	1										
10000	1	6.		20.00	51,004	113	52	1										

H - Alto Nominal [mm]

v - velocidad [m/s]

Sk – Sección de los condut**o**s [m²]

Se - Sección útil de la compurte [m²


Q - Caudal [n³/h]

dp - Caída de Presión [Pa]

		-	_	1300	_	_		The	1400	mi	_	1500				
	Inval	Sk Im'l	\$0 (m²)	Im/h)	dp [Pa]	L _{oca} (st8)	5k 1m/1	\$e [m/]	ImSh)	dp [Pa]	L	Sk [m/]	Sq. [m/]	Im ⁽⁾ (k)	dp [Pa]	L.,
	1			1380	100	10			2,016		-48-			4.164		-29
200	. 6	0.260	0.249	6.886 1	. 9	46	0.200 0.269 5.815 9 40 0	0.300	0.209	5.247	9	40				
VTSS.	11.5	1,635.0	1115.52	3	111	- 55	111711	10535	7.83	-16	1.85	11.000	13275	8,329	18	= 9
	30		_	4.406	-	-	_	\rightarrow	7.844	-7	- 22	-	_	4 (64)	4	-8
1000		0.00	3560	6.728	0	- 0	all and	Liver 1	7 268	0	16.	2.00	2330	620	- 8	10
250	1	9,575	0.311	0.927	0	69	9.350	0,337	2.60	- 18	113400	35,575	8.367	6.529	15	46
	710			11.214	.26	14			12.704	24	54			(g.4m)	-23	- 51
	13-		Second 1	李麗斯		41		ll and	2.815		100			9370	-	35
300	- 6	0.390	0.374	4074	16-	- 60	0.420	0.404	3 722 11 636	16	40	0.450	BASA	12.409	114	1 43
3442	10			行語行	15	65			16 6.87	-51	64			15.617		-23
	A			9.280	- 4	10			5/204	-	310			F 288	4	
355	1	0.455	0.436	2.572	1	61	0.490	0.475	19 176	_1_	40	0.525	0.506	10 032 14 576	_1	- 45
	15			刊級	14	45			10,965	77	4			14 270	13	-8
	40	_		1377	1.4	19			7.754	- 5	(28.2			5.529	- 6	95
	17			10.703	- 5	4/5			11,629	-3	40			17 493	3	40
400	8 -	B-256	0.498	14.954	13	0.430	0.550	0.538	15.50K-	-13	144	C 600	0.578	16 658	12	45
	10.			37.942	20.	31.			19/367	20	13			120.027	20	3/
	A.	100	-	8/674	13	.19		100	8772		19			9.978		30
450	0	0.169	0.563	2000000	(2)	40	11:650	9.605	37 444	-0-	40	0.675	19.054	16 198	100	40
	15			36 348 50 185	16	41			9 885	10	51			15.255	10	1 3
	CA.			.81.024	1.3	1.29			9.691		11307			10.611	-20	1 3
800	7.8	9.950	N-623	11.80		41	0.700	0.67)	14.537		40	0.750	0.725	12.015		-41
MY	1.5	(0.000)	4.64	17.942	12	- 53	51400	Sugar.	19.382	12	49	1000	00335	100.8221	12	- 44
	30			9 800 1 800	-	-30	_	_	30,000	177	30		_	26 (228	-	31
1000	1.5	2300	0.752	140002	7	40	Chiefall)	Lane.	1450007	7	-41	No. of Lot	Carle.	1.12 820	7	-01
550	130	0.715	0.699	10 737	12	4.5	0.710	0.340	27.00	32	40	0.025	0.795	22368	32	35
	40			24 671	10-	34	_	-	20 001 20 001 11 000	79	34	-		1.29 631	19'	- 50
	14			15 140	173	(628)			17.444	-1-	122			16.740	-	-3
600	1000	8.700	6,740	20,931	133	17	0.540	9.800	28.250	11:	40	0.950	0.008	34967	16	70
	70			25.511	17	- 33			29:074	-17	53			31.234	17	33
	1.4			33,063.	3	39			17,594	- 6	297			13/535	3.1	35
650	3	0.845	0.010	17-594	.0	47	0.010	0.075	18 999	- 9	44	0.975	0.940	57.000	6	45
	15			等級.	7	31			25 197	- 65	100			17 (1/6)	7	43
=	1.0			12,660		28			13.568	-11	180			14.576	-	- 83
		n nan-		15-840	-3	30		l and	20 352	3	59			11884	3	1 33
700		0.910	0.072	春暖	18	13346CH	0.900	0.045	20 35J 27 185	19	-06	1.054	1,012	28.791	10.	-67
	10	_	_		15	. 52	_	_	13.056	18.	51	_		16.419	15.	-0
200	- 6	75yyan	0.0	H 162	-	-8-	100-144	1	25 506 22 25#		260	70=5	0.885	14 997	-	20
\$00	13	1.040	9.997	29 708	1060	46	1.170	1.677.	31.012	10	43	1.790	1.157	33.346	10:	-
	10			35.888	.15	47			38.70%	15	5.0			417(45)	15.	100
	1.4			10.141		29			17.444		- 5			18.740		50
900	-0	1.170	5.521	30 296	- 2	67	1.190	1.211	26, 166 54, 688	-10	40	1.350	A Albert	33.485	-	40
Chicago.	10.	1000		495, 1255	15	37		1.200	43 030	-10		1000	1,-71	46.050	10	30
	100			37.540	3				19.382	- 1	1			10.022		28
1000	1.0	1300	1.246	F 76 95E	- 5	100	1,000	1316	29 074	- 35	1	1,650	1.446	1.31 2.64 (-5.	-35
1000	100	1300	1.200	500	9	100	1.400	1,300	B 755	- 12	46	1.900	1.440	41.647	- 0	4
	.10	_	_	44 056	14	47 35	_	_	1 456 (-11	1.2			13.056	-13	-8
	1			300	4	39	1									
1100	- 2	1:430:	2.379	77 000 W 474	100	37	1									
	36		1 5	201211	12	1.6	1									

APERTURA PARA INSTALACIÓN

PESO ESTIMADO DE LAS COMPUERTAS COMPUERTA MULTIZONA "mcr FID-V"

Peso en función de las dimensiones del condo(Kg):

								And	cho B (m	ım)						
		200	250	3004	00	5006	00	7008	00	9001	0001	1001	200	13001	4001	500
	200	9,59	,7	10	10	15	17	17,5	19	22	25	28	30	33	39	45
	250	9,51	01	11	11	61	7,51	82	12	42	72	93	23	44	54	8
	300	10	11	11	12	17	20	21	23	26	28	31	34	38	50	51
	350	11	11	11	16	18	20,52	32	62	82	93	33	53	65	25	3
	400	10	11	12	18	19	21	25	29	30	33	35	36	39	54	55
	500	15	16	17	19	20	23	27	32	33	35	38	40	44	55	56
<u>-</u>	600	17	17,5	20	21	30	26	30	35	37	39	43	48	52	56	58
H (mm	700	17,5	18	21	23	30	35	35	40	42	44	47	52	54	57	65
Altura H (mm)	800	20	21	22	24	29	35	37	41	43	49	52	57	60	62	78
4	900	22	25	25	28	33	35	39	43	47	53	56	60	62	64	82
	1000	23	29	28	33	36	42	43	49	53	56	59	65	67	69	98
	1100	26	30	31	35	38	42	47	56	59	62					-
	1200	32	33	35	36	40	49	53	56	61	71	-				-
	1300	39	40	38	39	44	52	57	59	78	79	-				-
	1400			48	39	48	56	63	65	80	82	-				-
	1500			50	50	52	58	68	71	82	98	•				-

NOTA: Para Compuetas sin actuador restar 1 Kg

Ξ

VALVULAS CORTAFUEGO CIRCULARES

mcr ZIPP

Aplicación

- Las válvulas cortafuego mcr ZIPP han sido diseñadas para ser instalados en los extremos del sistema de ventilación general, donde los conductos pasan a través de los tabiques del edificio. Se utilizan para separar el área de riesgo de incendio de otras partes del edificio, así como para permitir el paso del aire a través de los diferentes sectores.
- Durante el fuego, las válvulas mcr ZIPP se cierran por la actuación de un fusible térmico que actúa a los 72°C previniendo de la expansión del fuego, las llamas y el humo en la zona contigua del edificio.
- En situaciones normales de operación la compuerta permanece abierta, pudiéndose ajustar el caudal de salida girando manualmente el plato de cierre.

Normativa

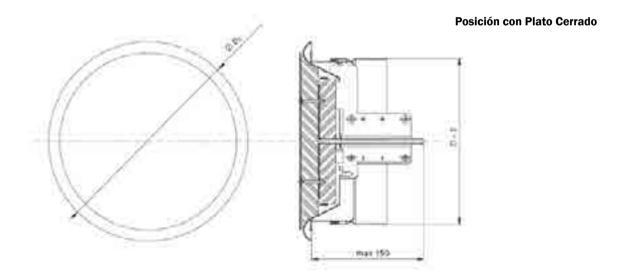
- Resistencia al fuego EIS120 (E=Integridad del elemento constructivo, I=Aislamiento o capacidad de soportar la exposición al fuego, S=Estanqueidad de los humos).
- Las válvulas mcr ZIPP están certificadas según normativa EN 15650 (Ventilación de edificios, Compuertas Cortafuego), según normativa EN 13501-3 (Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 3: Clasificación a partir de datos obtenidos en ensayos de resistencia al fuego de productos y elementos utilizados en las instalaciones de servicio de los edificios: Conductos y compuertas resistentes al fuego) y según normativa EN 1366-2 (Ensayos de resistencia al fuego de instalaciones de servicio. Parte 2: Compuertas cortafuegos).
- · Certificado bajo Marcado CE 1396-CPR-0092

DISEÑO VÁLVULA CORTAFUEGO "mcr ZIPP"

MECANISMOS DE DISPARO Y OPCIONES

Además del mecanismo de actuación manual, las válvulas cortafuego de final de conducto se pueden suministrar accionadas por otros mecanismos de tipo eléctrico. En estos casos la compuerta puede actuar por un doble sistema: mediante fusible térmico o mediante accionamiento electro-mecánico.

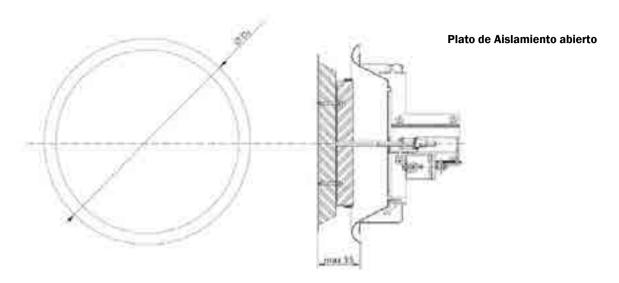
Tipos de accionamiento:


DISPOSITIVO	DESCRIPCIÓN
RST	FUSIBLE TÉRMICO A 4° C TIPO BIMETÁLICO, OPCIONLMENTE A 95°C
RST + WK1	FUSIBLE TÉRMICO A 4°C BIMETÁLICO Y CONACTOS DE ESADO (1xno + 1xno)
RST + EKI 24	FUSIBLE TÉRMICO BIMETÁLICO + CONCTOS DE ESTADO (1xno + 1xnc) + ACCIONMIENTO ELÉCTRICO MEDIANTE PULSO DE 24 VCD
RST + EKP 24	FUSIBLE TÉRMICO BIMEALICO + CONTACTOS DE ESTADO (1xno + 1xnc) + accioamiento eléctrico por cote de tensión a 24 v o
MP230/24	UNIDAD DE CONVERSIÓN DE MOAJE DE 24 V DC A 230 V AC

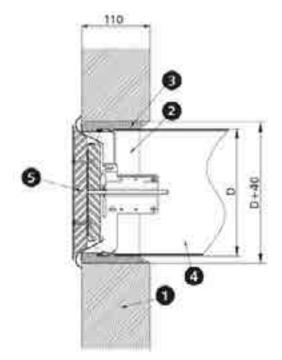
VERSIONES Y DIMENSIONES EN FUNCIÓN DEL MECANISMO

- Fabricadas en diámetros nominales Standard de: 100 mm, 125 mm, 160 mm, 200 mm.
- Dimensiones en función del mecanismo utilizado: RST, RST+EK

VÁLVULA mcr ZIPP RST

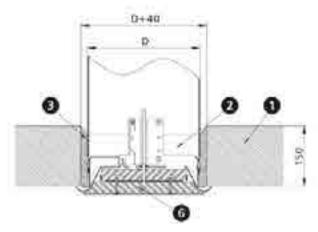

Las Válvulas "mcr ZIPP RST" permanecen con el plato de cierre abierto en condiciones normales de uso. En caso de incendio, éste se cierra automáticamente al alcanzarse los 74°C (95°C Opcionalmente). El mecanismo de disparo es un fusible térmico que ha de ser sustituido una vez se haya disparado. Es posible equipar este sistema con contactos de situación de estado WK1 (1 NO + 1 NC).

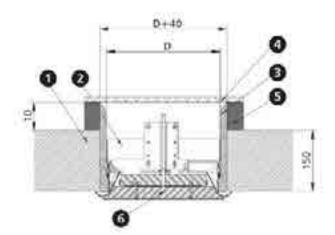
VÁLVULA mcr ZIPP RST + EK


Las Válvulas "mcr ZIPP RST + EK" permanecen con el plato de cierre abierto en condiciones normales de uso. En caso de incendio, éste se cierra a utomáticamente a l alcanzarse los 74°C (95°C Opcionalmente) o de forma remota por alimentación o corte de suministro eléctrico. Al igual que en el caso anterior, este tipo de válvulas están equipadas con contactos de situación de estado WK1.

INSTALACIÓN EN PAREDES O TECHOS

Instalación sobre conducto en pared


- 1. P ared de Cemento o Albañilería
- 2. E xtensión para conexión en tubería
- 3. Sello de cemento o yeso
- 4. Conducto



Instalación sobre conducto en techo

Instalación sin conducto en techo

- 1. T echo
- 2. E xtensión para conexión con tubería
- 3. Sello de cemento o yeso
- 4. R ejilla de Protección (no incluida).
- 5. Cubre conducto circular

PARÁMETROS TÉCNICOS

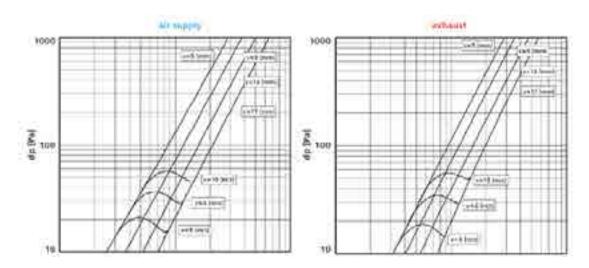
Se - Sección útil de la computer [m²]

Sk - Sección de los condut**c**s [m²]

D – Diámeto nominal [mm]

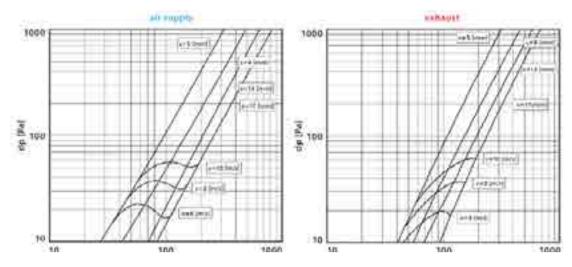
Diameter D [mm]	1001	25	1602	00
Se	0,0027	0,00550	,01110	,0191
Sk	0,0079	0,0123	0,0201	0,0314

Características de Caudal


dp - Caída de Presión [Pa]

S - Apertura de la válvula [mn)

v - velocidad [m/s 🎗


- Caudal [m³/h]

Características de caudal mcr ZIPP 100

Características de caudal mcr ZIPP 125

PESO DE LAS VÁLVULAS CORTAFUEGO (KG)

diameter D [mm]	RSTR	ST+EK
100	0,91	
125	1,51	,6
160	1,71	,8
200	2,72	,8

IDFIRE APP

IDFIRE

SOFTWARE INTEGRAL PARA LA PROTECCIÓN PASIVA CONTRA INCENDIOS

IDFIRE es la elección preferida de ingenieros y arquitectos para simplificar el cálculo y la especificación de soluciones de protección pasiva contra fuego en sus proyectos.

Gestión de Proyectos

IDFIRE le ayuda a encontrar guías de especificaciones con productos o soluciones en formato Word fácilmente editable para usar en la generación de descripciones de sus proyectos. Cada guía de especificación incluye solo los sistemas y productos cortafuegos relevantes para ese tipo de construcción.

Utiliza IDFIRE como herramienta de seguimiento integral para la disciplina de protección pasiva contra fuego durante tu proyecto de construcción, identificando la instalación, documentando y registrando posibles desvíos o problemas para reducir tiempos e inconvenientes al final del proyecto

Construyendo de forma segura

SELECCIÓN Y ESTIMACIÓN DE SOLUCIONES DE PROTECCIÓN PASIVA CONTRA FUEGO

Optimice el diseño y la gestión de sellos de pasada, juntas, collarines y placas RF. Con IDFIRE, puede diseñar en cuestión de minutos, reduciendo el riesgo y ahorrando hasta un 80% de tiempo en el proceso. Seleccione la solución de sellado adecuada filtrando por según los requisitos específicos

CÁLCULO DE DIVERSOS MATERIALES DE PROTECCIÓN PASIVA CONTRA FUEGO

IDFIRE calcula la pintura ignífuga o mortero intumescente necesarios para la protección certificada contra fuego de las estructuras metálicas y/o de concreto en sus obras, ya sea en especificación o en construcción.

Solución completo en terreno

Sellos de Pasada:Registra y documenta el proceso de instalación en tiempo real, mapea la ubicación de todas las paredes y pisos, programa cada área cortafuegos (junto con una imagen de la instalación), registra cuándo se instaló, qué materiales se usaron y su número de referencia y la etiqueta impresa proporcionan el registro de cada pasada.

Puertas Cortafuego: Registra la instalación, Inspecciona, mantiene e instala puertas cortafuego de acuerdo con los estándares del fabricante.

Templadores, Dampers y Compuertas Cortafuegos: Registra con precisión las pruebas de evidencia para cumplir con las autoridades y auditores.

Protección Estructural: Registra y documenta el trabajo en la instalación de revestimientos ignífugos, garantizando la calidad y seguridad.

Compartimentación: Registra cambios en muros RF, juntas o pasadas para cumplir con las normas de construcción.

Acceso online en tiempo real

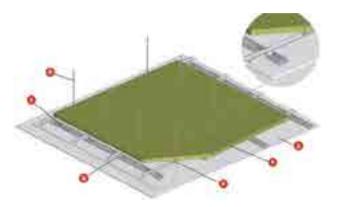
Acceso online a los contratistas principales, ITOS, compañías de seguros o autoridades locales involucradas, proporcionando los registros de instalación, certificación, mantención o inspección.

SOLUCIONES CORTAFUEGO ESPECÍFICAS

SOLUCIONES CORTAFUEGOS PARA SUBESTACIONES

Synixtor ofrece una amplia gama de soluciones cortafuego para Salas Eléctricas

Muros Cortafuegos Modulares TECBARRIER para transformadores y baterías


Pintura Intumescente y Mortero Ignifugo para Estructura Metálica

Synixtor ofrece un revestimiento intumescente base agua de bajo VOC, desarrollado por Sherwin Williams especialmente para protección de estructuras metálicas contra la acción directa del fuego. Cumple con la resistencia al fuego exigida por la Norma Chilena NCh 935/1 Of. 97.

Los morteros Tecwool® en base a lana de roca de fibra larga son incombustibles, presentan una gran adherencia sobre cualquier tipo de soporte o superficie, y a diferencia del resto de los morteros de uso en Chile, su aplicación es en seco, no mancha y su primera fase de curado es a las 24 horas.

TABIQUES Y CIELOS FALSOS RF

Sellos cortafuegos de pasadas de instalaciones (cables y tubos)

Los sellos cortafuego son otro de los métodos dedicados a confinar el fuego, sellando el paso de las penetraciones de estas instalaciones por los tabiques cortafuegos evitando así también la propagación de humo, calor, gas tóxico y llamas a las otras secciones. STI FIRESTOP ha desarrollado una amplia gama de espumas, masillas y siliconas específicas para sellar las penetraciones por tipo de servicio y material cables o tubos metálicos, pvc, etc.

Pintura Cortafuego de Escalerillas y Cables Electricos

- Actúa evitando la propagación de flamas a lo largo de cables eléctricos y la generación de gases tóxicos. LIBRE DE HALOGENOS
- Puede ser aplicado con brocha o equipos Airless
- Dispone de certificacion UL y FM.

Sellos cortafuegos de pasadas de instalaciones (cables y tubos) de ROXTEC

Aparamenta eléctrica, transformadores, generadores

Las soluciones de sellado para cables y tuberías Roxtec son extremadamente flexibles y, por lo tanto, excelentes cuando desea lograr un uso seguro y eficiente del espacio. Aproveche el diseño de aperturas en lugar de configuraciones de cables.

Paredes y suelos

Todos los cables y tuberías que pasan por la pared, techo o suelo del edificio o caseta se pueden sellar con el sistema de sellado Roxtec. Los sellos son herméticos y contribuyen a ahorrar costes ya que no permiten escapar el aire de áreas refrigeradas. Proteja el equipo de alta intensidad de cable con nuestras entradas de cables certificadas que se pueden abrir para simplificar el mantenimiento y los cambios repentinos.

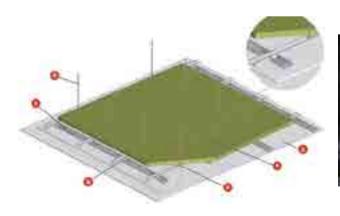
Puertas Cortafuegos

La gama más completa en puertas y vidrios cortafuegos reversibles, multiusos, doble circulación, seguridad, etc., puertas Roper

Exutorios

Crean automáticamente una apertura en la cubierta o fachada para permitir la evacuación natural de gases de combustión y calor.

SOLUCIONES CORTAFUEGOS PARA SALAS ELÉCTRICAS


Synixtor ofrece una amplia gama de soluciones cortafuego para Salas Eléctricas

Pintura Intumescente y Mortero Ignifugo para Estructura Metálica

Synixtor ofrece un revestimiento intumescente base agua de bajo VOC, desarrollado por Sherwin Williams especialmente para protección de estructuras metálicas contra la acción directa del fuego. Cumple con la resistencia al fuego exigida por la Norma Chilena NCh 935/1 Of. 97.

Los morteros Tecwool® en base a lana de roca de fibra larga son incombustibles, presentan una gran adherencia sobre cualquier tipo de soporte o superficie, y a diferencia del resto de los morteros de uso en Chile, su aplicación es en seco, no mancha y su primera fase de curado es a las 24 horas.

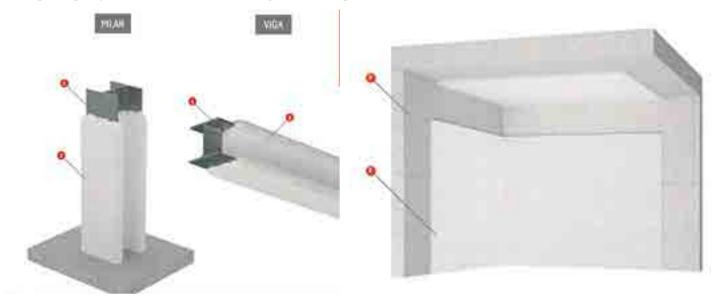
TABIQUES Y CIELOS FALSOS RF

Sellos cortafuegos de pasadas de instalaciones (cables y tubos)

Los sellos cortafuego son otro de los métodos dedicados a confinar el fuego, sellando el paso de las penetraciones de estas instalaciones por los tabiques cortafuegos evitando así también la propagación de humo, calor, gas tóxico y llamas a las otras secciones. STI FIRESTOP ha desarrollado una amplia gama de espumas, masillas y siliconas específicas para sellar las penetraciones por tipo de servicio y material cables o tubos metálicos, pvc, etc.

Sellos cortafuegos de pasadas de instalaciones (cables y tubos) de ROXTEC

C


SOLUCIONES CORTAFUEGOS PARA INDUSTRIAS

En una bodega, la seguridad del personal y del material almacenado son las principales prioridades. La instalación de un sistema de protección contra incendios debe ser obligatorio, y en particular un sistema cortafuegos adecuado permitirá proteger las vías de evacuación del personal, y evitará la propagación y el daño extendido de instalaciones y materiales. Synixtor se ha especializado en integrar soluciones internacionales certificadas a los requerimientos de este tipo de locales en Chile y para ello trabajamos con diversos fabricantes de reconocido prestigio que nos permiten cubrir todas las áreas de protección.

Morteros ignífugos para estructura metálica y de hormigón

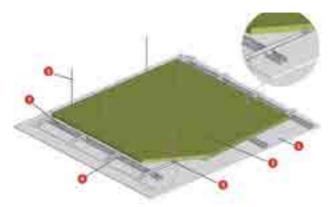
Synixtor distribuye para Chile los morteros de protección contra fuego Tecwool® fabricados por la empresa Europea Mercor Tecresa, la única línea de morteros de lana de roca de fibra larga proyectada en seco con marcado CE y homologado en Chile por DICTUC.

Los morteros Tecwool® en base a lana de roca de fibra larga son incombustibles, presentan una gran adherencia sobre cualquier tipo de soporte o superficie, y a diferencia del resto de los morteros de uso en Chile, su aplicación es en seco, no mancha y su primera fase de curado es a las 24 horas.

Pintura Intumescente para Estructura Metálica

Synixtor ofrece un revestimiento intumescente base agua de bajo VOC, desarrollado por Sherwin Williams especialmente para protección de estructuras metálicas contra la acción directa del fuego. Cumple con la resistencia al fuego exigida por la Norma Chilena NCh 935/1 Of. 97.

En presencia de fuego directo o calor, el revestimiento intumescente se expande y se carboniza, formando una gruesa capa de escoria esponjosa adherida al metal que actúa como barrera aislante, retardando el tiempo en que el sustrato alcanza la temperatura de 500° C en que el acero se deforma y la estructura colapsa



Cielos falsos

Los cielos falsos cortafuegos se utilizan fundamentalmente en dos situaciones concretas: La primera sería para independizar verticalmente distintos sectores de incendio; esta medida sirve para acotar el fuego en el lugar de inicio y evitar que éste se propague entre las distintas plantas.

Esta solución es de gran utilidad, pues una sectorización incompleta produciría un gran avance del fuego y generaría muchos problemas durante la evacuación

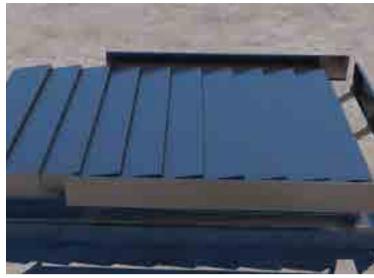
Sellos cortafuegos de pasadas de instalaciones (cables y tubos) de 3m

Los sellos cortafuego son otro de los métodos dedicados a confinar el fuego, sellando el paso de las penetraciones de estas instalaciones por los tabiques cortafuegos evitando asítambién la propagación de humo, calor, gas tóxico y llamas a las otras secciones. 3M ha desarrollado una amplia gama de espumas, masillas y siliconas específicas para sellar las penetraciones por tipo de servicio y material cables o tubos metálicos, pvc, etc.

Sellos cortafuegos de juntas estructurales

El sellado de los diversos tipos de juntas que se conforman en las construcciones constituye un requisito imprescindible para impedir el paso del fuego y proteger las estructuras. 3M ha desarrollado una nueva cinta de barrera cortafuego 3M FWBT que protege tanto juntas estructurales como juntas perimetrales. Este es el primero de su tipo y contiene membranas autoadhesivas que proporcionan un sellado elastomérico resistente.

Barreras Cortafuego y Humo


Las barreras cortafuego y humo permiten direccionar el humo hacia la zona de extracción Constituyen un sistema mecánico integrado en la construcción que permite controlar el movimiento de los humos y gases

Tabiques y shafts cortafuegos

Los tabiques TECBOR y shafts cortafuegos de MERCOR TECRESA realizan funciones de separación entre sectores de incendio, retrasan la acción del fuego y evitan que éste se propague a los otros sectores. Deben tener una resistencia al fuego que permita un tiempo para la evacuación, como se indica en la norma NCh 935/1.Of 97.

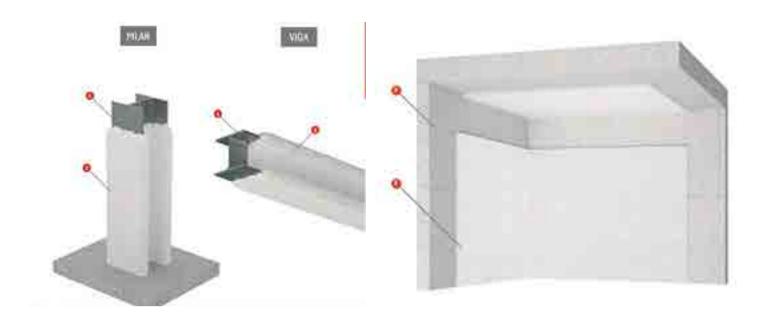
Exutorios

Crean automáticamente una apertura en la cubierta o fachada para permitir la evacuación natural de gases de combustión y calor.

Puertas y Vidrios Cortafuegos

La gama más completa en puertas y vidrios cortafuegos, reversibles, multiusos, doble circulación, seguridad, etc, puertas Asturmadi

SOLUCIONES CORTAFUEGOS PARA HOSPITALES


En un hospital, la salud y la seguridad del paciente son las principales prioridades. La instalación de un sistema de protección contra incendios debe ser obligatorio, y en particular un sistema cortafuegos adecuado permitirá proteger las vías de evacuación de los pacientes y el personal, y reducirá el daño extendido a instalaciones y equipos.

Synixtor se ha especializado en integrar soluciones internacionales certificadas a los requerimientos hospitalarios de Chile y para ello trabajamos con diversos fabricantes de reconocido prestigio que nos permiten cubrir todas las áreas de protección.

Morteros ignífugos para estructura metálica y de hormigón

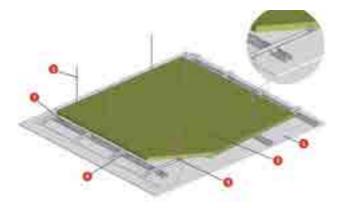
Synixtor distribuye para Chile los morteros de protección contra fuego Tecwool® fabricados por la empresa Europea Mercor Tecresa, la única línea de morteros de lana de roca de fibra larga proyectada en seco con marcado CE y homologado en Chile por DICTUC.

Los morteros Tecwool® en base a lana de roca de fibra larga son incombustibles, presentan una gran adherencia sobre cualquier tipo de soporte o superficie, y a diferencia del resto de los morteros de uso en Chile, su aplicación es en seco, no mancha y su primera fase de curado es a las 24 horas.

Pintura Intumescente para Estructura Metálica

Synixtor ofrece un revestimiento intumescente base agua de bajo VOC, desarrollado por Sherwin Williams especialmente para protección de estructuras metálicas contra la acción directa del fuego. Cumple con la resistencia al fuego exigida por la Norma Chilena NCh 935/1 Of. 97.

En presencia de fuego directo o calor, el revestimiento intumescente se expande y se carboniza, formando una gruesa capa de escoria esponjosa adherida al metal que actúa como barrera aislante, retardando el tiempo en que el sustrato alcanza la temperatura de 500° C en que el acero se deforma y la estructura colapsa



Cielos falsos

Los cielos falsos cortafuegos se utilizan fundamentalmente en dos situaciones concretas: La primera sería para independizar verticalmente distintos sectores de incendio; esta medida sirve para acotar el fuego en el lugar de inicio y evitar que éste se propague entre las distintas plantas.

Esta solución es de gran utilidad, pues una sectorización incompleta produciría un gran avance del fuego y generaría muchos problemas durante la evacuación

Tabiques y shafts cortafuegos

Los tabiques TECBOR y shafts cortafuegos de MERCOR TECRESA realizan funciones de separación entre sectores de incendio, retrasan la acción del fuego y evitan que éste se propague a los otros sectores. Deben tener una resistencia al fuego que permita un tiempo para la evacuación, como se indica en la norma NCh 935/1.Of 97.

Sellos de pasada hospitalarios

* Sellos cortafuegos de pasadas de instalaciones

Cada unidad hospitalaria tiene puertas, ventanas e instalaciones (ventilación, hidráulico, eléctrico y de comunicaciones). Los sellos cortafuego son otro de los métodos dedicados a confinar el fuego, sellando el paso de las penetraciones de estas instalaciones por los tabiques cortafuegos evitando así también la propagación de humo, calor, gas tóxico y llamas a las otras secciones. 3M ha desarrollado una amplia gama de espumas, masillas y siliconas específicas para sellar las penetraciones por tipo de servicio y material cables o tubos metálicos, pvc, etc.

* Sellos cortafuegos de juntas estructurales

El sellado de los diversos tipos de juntas que se conforman en las construcciones hospitalarias constituye un requisito imprescindible para impedir el paso del fuego y proteger las estructuras.

Sellos de pasada hospitalarios

* Sellos cortafuegos de pasadas de instalaciones

Cada unidad hospitalaria tiene puertas, ventanas e instalaciones (ventilación, hidráulico, eléctrico y de comunicaciones). Los sellos cortafuego son otro de los métodos dedicados a confinar el fuego, sellando el paso de las penetraciones de estas instalaciones por los tabiques cortafuegos evitando así también la propagación de humo, calor, gas tóxico y llamas a las otras secciones. 3M ha desarrollado una amplia gama de espumas, masillas y siliconas específicas para sellar las

Presurización de cajas escalas

Este método está basado en el control del humo mediante la velocidad del aire y la barrera artificial que crea la sobrepresióndel mismo, para que el humo no pueda entrar en las vías de escape.

El sistema de presión diferencial permite mantener condiciones soportables en la caja escala, limitando la propagación de humo dentro de la misma.

Gestión y evacuación de humos

Gracias a estas soluciones es posible conducir el humo y gases del incendio hacia la zona de extracción a través de los exutorios en fachadas y cubiertas, y hacia la zona de extractores en los estacionamientos.

Exutorios:

Crean automáticamente una apertura en la cubierta o fachada para permitir la evacuación natural de gases de combustión y calor.

Barreras cortafuego y humo

Constituyen un sistema mecánico integrado en la construcción que permite controlar el movimiento de los humos y gases.

Sistemas de extracción de humos para estacionamientos

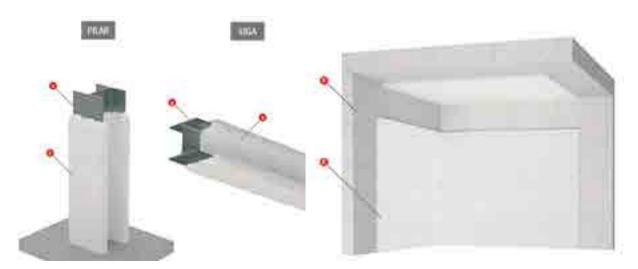
Cuando se produce un incendio en el estacionamiento de un edificio, es necesario extraer el humo de la zona del incendio para la evacuación de las personas y posibles víctimas, para proteger la estructura del edificio y para facilitar el acceso de los equipos de lucha antiincendio. Todos los extractores y ventiladores para evacuación de humos cumplen con las máximas exigencias y están certificados.

Synixtor ofrece una amplia gama de barreras cortafuego y humo y extractores para estacionamientos.

Sellado cortafuegos de aisladores sísmicos

Synixtor ofrece dentro de sus soluciones, la protección contra el fuego mediante la manta 3M DUCT WRAP para aisladores sísmicos, que mantiene la resistencia al fuego requerida o determinada por la Norma Chilena Nch 935/1 Of.97.

La manta 3M DUCT WRAP se instala por capas disipadoras de temperaturas, retardantes al fuego e ignífugas. Esta manta de protección se instala alrededor del elastómero o del soporte de hormigón del aislador sísmico. De esta forma se logra protegerlo de deformación o colapso en caso de incendio



SOLUCIONES CORTAFUEGOS PARA DATA Y TELECOM

Cuando se produce un incendio en un data center, es necesario extraer el humo de la zona del incendio para la evacuación de las personas y posibles víctimas, para proteger la estructura del edificio y para facilitar el acceso de los equipos de lucha anti-incendio.

Synixtor ofrece una amplia gama de barreras cortafuego y humo y extractores para bodegas.

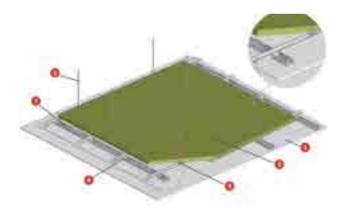
Morteros ignífugos para estructura metálica y de hormigón

Synixtor distribuye para Chile los morteros de protección contra fuego Tecwool® fabricados por la empresa Europea Mercor Tecresa, la única línea de morteros de lana de roca de fibra larga proyectada en seco con marcado CE y homologado en Chile por DICTUC.

Los morteros Tecwool® en base a lana de roca de fibra larga son incombustibles, presentan una gran adherencia sobre cualquier tipo de soporte o superficie, y a diferencia del resto de los morteros de uso en Chile, su aplicación es en seco, no mancha y su primera fase de curado es a las 24 horas.

Pintura Intumescente para Estructura Metálica

Synixtor ofrece un revestimiento intumescente base agua de bajo VOC, desarrollado por Sherwin Williams especialmente para protección de estructuras metálicas contra la acción directa del fuego. Cumple con la resistencia al fuego exigida por la Norma Chilena NCh 935/1 Of. 97.


En presencia de fuego directo o calor, el revestimiento intumescente se expande y se carboniza, formando una gruesa capa de escoria esponjosa adherida al metal que actúa como barrera aislante, retardando el tiempo en que el sustrato alcanza la temperatura de 500° C en que el acero se deforma y la estructura colapsa

Cielos falsos

Los cielos falsos cortafuegos se utilizan fundamentalmente en dos situaciones concretas: La primera sería para independizar verticalmente distintos sectores de incendio; esta medida sirve para acotar el fuego en el lugar de inicio y evitar que éste se propague entre las distintas plantas.

Esta solución es de gran utilidad, pues una sectorización incompleta produciría un gran avance del fuego y generaría muchos problemas durante la evacuación

Sellos cortafuegos de pasadas de instalaciones (cables y tubos) de 3M

Los sellos cortafuego son otro de los métodos dedicados a confinar el fuego, sellando el paso de las penetraciones de estas instalaciones por los tabiques cortafuegos evitando así también la propagación de humo, calor, gas tóxico y llamas a las otras secciones. 3M ha desarrollado una amplia gama de espumas, masillas y siliconas específicas para sellar las penetraciones por tipo de servicio y material cables o tubos metálicos, pvc, etc

Sellos cortafuegos de pasadas de instalaciones (cables y tubos) de ROXTEC

Los sellos Roxtec de nivel superior en cuanto a seguridad, protegen los centros de datos de vanguardia y salas de servidores contra fuego, agua y fugas de aire con el fin de garantizar un funcionamiento ininterrumpido. Los sellos le ayudan a controlar el clima de las instalaciones y pueden contribuir a reducir costes de refrigeración. Los sellos que se pueden abrir proporcionan capacidad de repuesto para centros de datos escalables y en crecimiento.

Areas de aplicación

Armarios, paneles y equipos

Los sellos ligeros Roxtec son perfectos para armarios, cajas, cajas de conexiones y otras aplicaciones con alta densidad de cables. Proteja el equipo sensible con un sello de entrada de cables organizado que se puede abrir para simplificar el mantenimiento y las actualizaciones.

HVAC

Las soluciones de sellado para cables y tuberías Roxtec proporcionan una protección certificada para los sistemas HVAC. Los sellos de eficiencia de área son fáciles de instalar e inspeccionar. Utilice entradas que se pueden abrir para simplificar el mantenimiento y estar preparado para actualizaciones.

Aparamenta eléctrica, transformadores, generadores

Las soluciones de sellado para cables y tuberías Roxtec son extremadamente flexibles y, por lo tanto, excelentes cuando desea lograr un uso seguro y eficiente del espacio. Aproveche el diseño de aperturas en lugar de configuraciones de cables

Paredes y suelos

Todos los cables y tuberías que pasan por la pared, techo o suelo del edificio o caseta se pueden sellar con el sistema de sellado Roxtec. Los sellos son herméticos y contribuyen a ahorrar costes ya que no permiten escapar el aire de áreas refrigeradas. Proteja el equipo de alta intensidad de cable con nuestras entradas de cables certificadas que se pueden abrir para simplificar el mantenimiento y los cambios repentinos.

Sellos cortafuegos de juntas estructurales

El sellado de los diversos tipos de juntas que se conforman en las construcciones constituye un requisito imprescindible para impedir el paso del fuego y proteger las estructuras.3M ha desarrollado una nueva cinta de barrera cortafuego

3M FWBT que protege tanto juntas estructurales como juntas perimetrales. Este es el primero de su tipo y contiene membranas autoadhesivas que proporcionan un sellado elastomérico resistente.

Tabiques y shafts cortafuegos

Los tabiques TECBOR y shafts cortafuegos de MERCOR TECRESA realizan funciones de separación entre sectores de incendio, retrasan la acción del fuego y evitan que éste se propague a los otros sectores. Deben tener una resistencia al fuego que permita un tiempo para la evacuación, como se indica en la norma NCh 935/1.Of 97.

Exutorios

Crean automáticamente una apertura en la cubierta o fachada para permitir la evacuación natural de gases de combustión y calor.

Barreras cortafuego y humo

Las barreras cortafuego y humo permiten direccionar el humo hacia la zona de extracción. Constituyen un sistema mecánico integrado en la construcción que permite controlar el movimiento de los humos y gases.

Puertas y Vidrios Cortafuegos

La gama más completa en puertas y vidrios cortafuegos , reversibles, multiusos, doble circulación, seguridad, etc , puertas Asturmadi

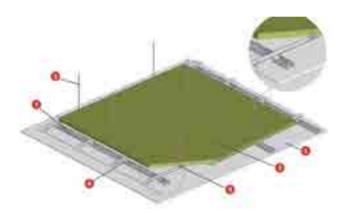
SOLUCIONES CORTAFUEGOS PARA BANCOS

En un banco, la seguridad en el alto tráfico de personas es la principal prioridad. La instalación de un sistema de protección contra incendios debe ser obligatorio, y en particular un sistema cortafuegos adecuado permitirá proteger las vías de evacuación de los visitantes y personal, y reducirá la propagación y el daño extendido de instalaciones y equipos.

Synixtor se ha especializado en integrar soluciones internacionales certificadas a los requerimientos de este tipo de dificaciones en Chile y para ello trabajamos con diversos fabricantes de reconocido prestigio que nos permiten cubrir todas las áreas de protección.

Tabiques y shafts cortafuegos

Los tabiques TECBOR y shafts cortafuegos de MERCOR TECRESA realizan funciones de separación entre sectores de incendio, retrasan la acción del fuego y evitan que éste se propague a los otros sectores. Deben tener una resistencia al fuego que permita un tiempo para la evacuación, como se indica en la norma NCh 935/1.Of 97.


Pintura Intumescente para Estructura Metálica

Synixtor ofrece un revestimiento intumescente base agua de bajo VOC, desarrollado por Sherwin Williams especialmente para protección de estructuras metálicas contra la acción directa del fuego. Cumple con la resistencia al fuego exigida por la Norma Chilena NCh 935/1 Of. 97.

En presencia de fuego directo o calor, el revestimiento intumescente se expande y se carboniza, formando una gruesa capa de escoria esponjosa adherida al metal que actúa como barrera aislante, retardando el tiempo en que el sustrato alcanza la temperatura de 500° C en que el acero se deforma y la estructura colapsa.

Cielos Falsos

Los cielos falsos cortafuegos se utilizan fundamentalmente en dos situaciones concretas: La primera sería para independizar verticalmente distintos sectores de incendio; esta medida sirve para acotar el fuego en el lugar de inicio y evitar que éste se propague entre las distintas plantas.

Esta solución es de gran utilidad, pues una sectorización incompleta produciría un gran avance del fuego y generaría muchos problemas durante la evacuación

Sellos cortafuegos de pasadas de instalaciones (cables y tubos) de 3M

Los sellos cortafuego son otro de los métodos dedicados a confinar el fuego, sellando el paso de las penetraciones de estas instalaciones por los tabiques cortafuegos evitando así también la propagación de humo, calor, gas tóxico y llamas a las otras secciones. 3M ha desarrollado una amplia gama de espumas, masillas y siliconas específicas para sellar las penetraciones por tipo de servicio y material cables o tubos metálicos, pvc, etc

Sellos cortafuegos de juntas estructurales

El sellado de los diversos tipos de juntas que se conforman en las construcciones constituye un requisito imprescindible para impedir el paso del fuego y proteger las estructuras.

3M ha desarrollado una nueva cinta de barrera cortafuego 3M FWBT que protege tanto juntas estructurales como juntas perimetrales. Este es el primero de su tipo y contiene membranas autoadhesivas que proporcionan un sellado elastomérico resistente.

Barreras Cortafuego y Humo

Las barreras cortafuego y humo permiten direccionar el humo hacia la zona de extracción. Constituyen un sistema mecánico integrado en la construcción que permite controlar el movimiento de los humos y gases.

Exutorios

Crean automáticamente una apertura en la cubierta o fachada para permitir la evacuación natural de gases de combustión y calor.

Puertas y Vidrios Cortafuegos

La gama más completa en puertas y vidrios cortafuegos, reversibles, multiusos, doble circulación, seguridad, etc, puertas Asturmadi

HVAC

Las soluciones de sellado para cables y tuberías Roxtec proporcionan una protección certificada para los sistemas HVAC. Los sellos de eficiencia de área son fáciles de instalar e inspeccionar. Utilice entradas que se pueden abrir para simplificar el mantenimiento y estar preparado para actualizaciones.

Aparamenta eléctrica, transformadores, generadores

Las soluciones de sellado para cables y tuberías Roxtec son extremadamente flexibles y, por lo tanto, excelentes cuando desea lograr un uso seguro y eficiente del espacio. Aproveche el diseño de aperturas en lugar de configuraciones de cables.

Paredes y suelos

Todos los cables y tuberías que pasan por la pared, techo o suelo del edificio o caseta se pueden sellar con el sistema de sellado Roxtec. Los sellos son herméticos y contribuyen a ahorrar costes ya que no permiten escapar el aire de áreas refrigeradas. Proteja el equipo de alta intensidad de cable con nuestras entradas de cables certificadas que se pueden abrir para simplificar el mantenimiento y los cambios repentinos.

Sellos cortafuegos de juntas estructurales

El sellado de los diversos tipos de juntas que se conforman en las construcciones constituye un requisito imprescindible para impedir el paso del fuego y proteger las estructuras.

3M ha desarrollado una nueva cinta de barrera cortafuego 3M FWBT que protege tanto juntas estructurales como juntas perimetrales. Este es el primero de su tipo y contiene membranas autoadhesivas que proporcionan un sellado elastomérico resistente.

Puertas y Vidrios Cortafuegos

La gama más completa en puertas y vidrios cortafuegos , reversibles, multiusos, doble circulación, seguridad, etc , puertas Roper

OBRAS DE REFERENCIA

CHUQUICAMATA PROTECCION SELLOS PERIMETRALES

EMIN Ingeniería y Construcción SA MINERIA

Protección pasiva contra incendios en los sellos Perimetrales de las Puertas Cortafuego del Túnel de Acceso Principal. (TAP) de Mina Chuquicamata -Subterránea.

Solución implementada: 3M™ Fire Dam 150+ & Cinta E-FIS

Nuestro cliente EMIN Ingeniería y Construcción SA. es una empresa que fue creada en 1984 al alero de la empresa de ingeniería Hoehmann Stagno & Asociados, con el objetivo de desarrollar soluciones innovadoras en el área de geosintéticos especialmente para el sector minero. A lo largo de los años, ha participado en distintas áreas de la construcción, colaborando fuertemente con sus obras al recimiento y desarrollo minero del país, desempeñando un rol fundamental en el campo de la hidrometalurgia.

En Septiembre de 2019, se presenta propuesta por la

protección pasiva contra incendios para los sellos Perimetrales de las Puertas Cortafuego de acceso al túnel principal (TAP) del proyecto Mina Chuquicamata – Subterránea. Revisando la información proporcionada por EMIN INGENIERIA Y CONSTRUCCIÓN SA, se realiza la determinación de la solución a incorporar a través de la identificación de los sistemas cortafuego a implementar de acuerdo a normativa local (OGUC) y americana (NFPA).

EMIN INGENIERÍA Y CONSTRUCCIÓN SA. Nos plantea la necesidad de dar una completa hermeticidad a sus puertas de acceso, para ello será necesario el sellado de todas las Juntas Perimetrales tanto horizontales como verticales de las Puertas Cortafuego.

El requerimiento consistió en proveer de un sello perimetral que cumpliera las siguientes características:

- 1) Solución certificada (UL Nch)
- 2) Resistencia al fuego y humo sobre 90 min
- 3) Dar una completa hermeticidad a sus puertas de acceso
- 4) Pintable

Sistemas propuestos:

Solución	Materiales	Statema
Juntas de puertas cortafuego con pared de concreto	FireDam 150+ Cinta E-FIS	552947
Juntas de puertas cortafuego con pared de drywall	FireDam 150+ Cinta E-FIS	554640 R02

Características de la solución brindada

Permite el movimiento

3M Fire Barrier Sellador FireDam 150+, es un sellador elastomérico a base de látex. Sistema ignífugo de juntas. El sello sigue siendo flexible y permite el movimiento típico de las juntas.

Clasificación de hasta 3 horas

Clasificación de hasta 3 horas de protección contra fuego conformidad con ASTM E 814 (UL 1479)

GLASSTECH S.A. MURO CORTINA FWBT

GLASSTECH CONSTRUCCION

Sello corta fuego y humo en Muro Cortina en el edificio Pits Núcleo Bellavista

Solución implementada: 3M™ Fire Water Barrier Tape - FWBT

Nuestro cliente GLASSTECH S.A. es una empresa con más de 50 años en el mercado, fabricando productos de cristal, bajo exigentes normas de calidad, principal característica que le ha permitido lograr con éxito un sostenido desarrollo en el mercado. Con una planta de 21.000 metros cuadrados, ubicado: en Santiago de Chile, cuenta con las más modernas tecnologías para procesar Cristal, Aluminio y PVC.

El Requerimiento consistió en proveer de un sello cortafuego que cumpliera las siguientes características:

- 1) Solución certificada (UL Nch)
- 2) Resistencia al fuego y humo sobre 120 min
- 3) Que tuviera capacidad de movimiento (Elastómero)
- 4) Rápido de implementar
- 5) Sin tiempo de curado
- 6) Aplicación limpia
- 7) Pintable

SISTEMAS PROPUESTOS

Materiales	Sistema UL
Fire Water Barrier Tape - FWBT	CW-S-2007
	1/massas/sess

Características de la solución brindada

3M™ Fire and Water Barrier Tape

Material Elástico

3M™ Fire and Water Barrier Tape, es una cinta elastomérica que ayuda a controlar la transmisión de fuego, calor y humo. Este material elástico mantiene su rendimiento con capacidades de movimiento de hasta +/- 50%. Tiene un adhesivo para los

materiales de construcción más comunes, su versatilidad es un adhesivo único que se adhiere a superficies húmedas.

Instalación a altas y bajas temperaturas

Además, se puede instalar a temperaturas tan bajas como (18 ° C) y tan altas como (49 ° C). Este producto actúa como una barrera acústica al minimizar la transferencia de ruido, y también actúa como una barrera inmediata contra la fuga de agua que pasa Prueba de resistencia a la lluvia ASTM D 6904

COMPARTIMENTACIÓN Y SELLO CORTAFUEGO SHAFTS PCI CLÍNICA BUPA

CONSTRUCTORA PACTO CONSTRUCCION

Compartimentación horizontal y sello cortafuego de instalaciones en shafts PCI en Clínica Bupa

Solución implementada: 3M™ Fire Barrier Composite Sheet CS-195+

Nuestro cliente CONSTRUCTORA PACTO. es una empresa de amplia trayectoria en el sector construcción, especialmente en el sector salud, cumpliendo a cabalidad las exigentes normas de seguridad de estos establecimientos tanto nacionales como internacionales.

En este caso, ya que los shaft de la red de incendio, al ser considerados una instalación crítica, debían estar adecuadamente compartimentados, el requerimiento debía cumplir con las siguientes características:

- 1) Solución certificada (UL Nch)
- 2) Resistencia al fuego y humo sobre 120 min
- 3) Que pudiera estar fijado mecánicamente a la losa

Sin embargo, debido al tamaño de las aberturas, el que excedía el máximo indicado por los sistemas UL sugeridos, además de presentar penetraciones de diferentes especialidades, especialmente eléctricas, fue necesario diseñar una solución UNICA para el proyecto mediante un Juicio de Ingeniería.

Instalación	Sist	ema	Productos 3M				
Tuberia metálica red de incendio	EJ603549	C-AJ-8001	CS195+ / CP25WE+ / Ultra GS / RC-1				

Características de la solución brindada

Su expansión es de 8 a 10 veces su tamaño original

3M™ Fire Barrier Composite Sheet CS-195+ funciona como un corta fuegos intermitente efectivo dentro de trayectos de charolas con cables horizontales y verticales, y es excelente tanto para construcciones nuevas así como para trabajos de modernización de edificios. Cuando se le expone a temperaturas en exceso de 121°C (250°F), la hoja a prueba de fuego comienza a expandirse volumétricamente, y se hincha de 8 a 10 veces su tamaño original, formando un carbón duro de alta resistencia que retarda la transmisión del calor.

Hasta 4 horas de protección contra el fuego

3M™ Fire Barrier Masilla CP 25WB+ roja, de un componente, masilla elastomérica de látex con base agua, intumescente, endotérmica, tixotrópica y libre de halógenos. Clasificación de hasta 4 horas de protección contra fuego probado por estándar ASTM E-814 (UL 1479) & CAN/ULC S115.

Excelente aislador térmico

3M™ Fire Barrier Ultra GS es un material ignífugo en expansión para penetraciones de tuberías no metálicas diseñado específicamente como un cortafuegos adecuado para plástico y otros sistemas de penetración de tuberías no metálicas. 3M™ Fire Barrier Ultra GS tiene una resistencia al fuego de hasta 4 horas en sistemas probados y listados y cumple con los estándares de rendimiento ASTM E814 (UL 1479) para exposición a llamas, calor y agua. Presenta una construcción a base de grafito intumescente en gran parte inorgánica que se expande cuandose calienta para brindar un excelente aislamiento térmico y evitar la transferencia de calor, así como también proporciona una protección contra incendios efectiva para penetrantes no metálicos.

Conjunto diseñado para ajustarse a tuberías sin ensamblaje

3M Fire Barrier Restricting, Collar RC-1 es un dispositivo cortafuegos de 3M™ para penetraciones de tubería de plástico, diseñado para tuberías no metálicas de hasta 6" en instalaciones nuevas o reparaciones. Este conjunto de collarín de metal de una pieza está diseñado para ajustarse alrededor de la tubería sin necesidad de ensamblaje, y proporciona pestañas de anclaje para estabilidad. Es resistente al fuego hasta 2 horas en sistemas ensayados bajo normativa americana NFPA y certificados UL.

BUPA - SELLOS DE INSTALACIONES EN BOX ATENCIÓN

CONSTRUCTORA PACTO CONSTRUCCION

Sello cortafuego de instalaciones en box de atención en Clínica Bupa, Santiago

Soluciones implementadas 3M™ Fire Barrier Masilla CP 25WB+ & 3M Fire Barrier Sellador FireDam 150+

Nuestro cliente CONSTRUCTORA PACTO. es una empresa de amplia trayectoria en el sector construcción, especialmente en el sector salud, cumpliendo a cabalidad las exigentes normas de seguridad de estos establecimientos tanto nacionales como internacionales.

El área destinada por la Clínica Bupa para atención ambulatoria ha permitido que las consultas externas tengan mas espacio para instalaciones. Los Box tienen un diseño modular y sistemas fáciles e intercambiables que le han permitido permanecer eficiente y soportar cambios, mientras que brindan el servicio a la comunidad.

El requerimiento consistió en proveer de sellos corta fuegos los diferentes servicios instalados en los box de atención del piso 3, torre C.

Los diferentes servicios eran:

- · Especialidad eléctrica
- · Red de incendios
- · HVAC

Estos sellos debían cumplir con las siguientes características:

- 1) Solución certificada (UL Nch)
- 2) Resistencia al fuego y humo 120 minutos
- 3) Rápido de implementar

Instalación	Sistema	Productos 3M
Tubería metálica	W-L-1001	CP25WB+
Tuberia PVC diámetro inferior a 3"	W-L-2088	CP25WB+
Tubería PVC diámetro mayor a 3°	W-L-2150	CP25WB+ / Ultra GS / RC-1
Tuberías red de incendio	W-L-1167	FD 150+
Ductos metálicos	W-L-7063	CP25WB+

aplicada con 3M™ FireB arrier Masilla CP 25WB+ & 3M Fire Barrier Sellador FireDam 150+

Características de la solución brindada

Hasta 4 horas de protección contra el fuego

3M™ Fire Barrier Masilla CP 25WB+ roja, de un componente, masilla elastomérica de látex con base agua, intumescente, endotérmica, tixotrópica y libre de halógenos. Clasificación de hasta 4 horas de protección contra fuego probado por estándar ASTM E-814 (UL 1479) & CAN/ULC S115.

Fácil aplicación

Todos vienen en paquetes adecuados al tamaño de trabajo y se instalan fácilmente con una pistola de calafateo estándar, equipo de bombeo neumático o espátula.

Permite el movimiento

3M Fire Barrier Sellador FireDam 150+, es un sellador elastomérico a base de látex. Sistema ignífugo de juntas. El sello sigue siendo flexible y permite el movimiento típico de las juntas.

Clasificación de hasta 3 horas

Clasificación de hasta 3 horas de protección contra fuego conformidad con ASTM E 814 (UL 1479)

